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ABSTRACT

Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently

receiving a great deal of attention because of the potential to significantly improve the ability to sense,

analyze, and control a variety of processes. These processes are as varied as heating and ventilation

systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space

exploration. MEMS are a class of systems that are physically very small (micron level) and are a blend

of electrical and mechanical components---similar to ICs, but including both electrical and mechanical

systems on one chip.

This research establishes reliability estimation and prediction for MEMS devices at the conceptual design

phase using neural networks. At the conceptual design phase of a project, before the MEMS devices are

actually built and tested, traditional methods of quantifying reliability are inadequate because the device

is not in existence and cannot be tested to establish the reliability distributions. A novel approach using

neural networks is created to predict the overall reliability of a MEMS device based on its components

and each component's attributes.

The methodology begins with collecting attribute data (fabrication process, physical specifications,

operating environment, property characteristics, packaging, etc.) and reliability data for many types of

microengines developed by Sandia National Laboratories in Albuquerque, New Mexico (the only source

for MEMS reliability data in sufficient quantity). These data are partitioned into training data (the

majority) and validation data (the remainder). A neural network is applied to the training data (both

attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure),

the system output. After the neural network is trained with sufficient data, the validation data are used to

verify that the neural networks provided accurate reliability estimates. Now, the reliability of a new

proposed MEMS device can be estimated by using the appropriate trained neural networks developed in

this work.
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SECTION 1: INTRODUCTION

Research institutions and commercial laboratories are fabricating revolutionary new devices that may

become one of the key defining technologies of the upcoming decade. These devices, known as

microelectromechanical systems (MEMS), are a class of semiconductor devices that use both mechanical

and electrical systems at a microscopic scale. MEMS are essentially a hybrid of electrical and

mechanical systems only visible using a microscope. These devices are miniature in size, even compared

to a microscopic dust mite, see Figure 1. j In the MEMS environment, gravity and inertia are no longer

controlling, but rather the effects of atomic forces and surface science dominate (Sandia, 1997). MEMS

devices are generally batch-fabricated, tens of thousands at a time, with economies of scale significantly

reducing unit cost (Rai-Choudhury, 1997). In addition, the MEMS process can create highly reliable

systems with precision (Tanaka, et al., 1995).

1.1 BACKGROUND

Over these past four decades, there has been an exponential growth in the number of transistors

incorporated on a single piece of silicon (each with increased performance and capability), while an

exponential decrease in the cost per unit of these devices (Rai-Choudhury, 1997). These exponential

jumps are attributable to vast improvements in the manufacturing process control, cleanliness, critical

dimension precision, and automated test equipment (Stark, 1999). With the cost of these integrated

circuit (IC) building blocks going down and reliability going up, the computation, processing, and

communication power that can be achieved in a given device becomes overwhelming.

Figure 1. Spider mite on mirror assembly�Courtesy of Sandia National Labs.

Figures provided by Sandia National Laboratories.



Thecommercialproductionof thefirst IC signaledthebeginningof thesiliconrevolution(Tanaka,etal.,
1995).Now,thereareveryfewareasofdaily life thatarenotsomehowdirectlyor indirectlyaffectedby
ICs(Stark,1999).Inthecomingdecadeof thisnewmillennium,thenextstepin thesiliconrevolution
couldbethewidespreaduseof MEMSdevicesinmanycommercialandgovernmentapplications(Rai-
Choudhury,1997).

Growthanddevelopmentof microelectronicshasbeenlimitedmostlytodataprocessing,storage,and
datatransfer(IC domain).Thenextsiliconrevolutionwill takethisrealmbeyondpureelectronicsand
intothishybriddomainof mechanicalsystems(Rai-Choudhury,1997).Withthistransition,chipsof
tomorrowwill transcendtheplainelectronicsdomain.Figure2 showsaMEMSgeardesignedto
performmechanicalwork.

Theconceptof creatingmicromachineswasfirstdescribedin 1959byR.Feynmaninhisfamouspapers
thatareconsideredthefoundingdocumentsfor MEMS(Rai-Choudhury,1997).Inaddition,lessthan10
yearsaftertheinventionof theIC,H.C.Nathansonusedamicroelectronicfabricationtechniqueto make
theworld'sfirstmicromechanicaldevice(Rai-Choudhury,1997).Twodecadesago,theabilityto use
siliconformicroscopicmachineswasfurtherdescribedinaseminalpaperbyK.Petersonin 1982.

MEMStechnologyhasbecomeoneof themostpromisingemergingtechnologiesbecauseof itspotential
to significantlyaltermanyapplications.MEMStechnologyisreceivingsubstantialsupportforresearch
anddevelopmentthroughouttheworldandgoesbyseveralnames,suchasmechatronics,microsystems,
andmicromachines.MEMSwill likelyenablevastimprovementsin sensingandcontrolinautomotive,
medical,space,military,telecommunication,computing,environmental,industrial,andrecreational
applications(Mehregany,1993).

MEMSwill miniaturizetraditionalsystemsbyseveralordersof magnitude.Forexample,withthis
technology,aglobalpositioningsystemcouldbeplacedonthetipof apencilor thefastestcomputers
couldbeplacedinsideawalletasacreditcard.Alsowithintherealmof possibilityis theintegrationof
manandmachinewithembeddedbionics(Guckel,1993).Giventhesuccessof theelectronic
microcircuit,it ispredictablethatthesesametechnologieswill bringmechanicalmachinestothe
microscopicworldandproducesimilarresults:lowcost,highperformance,andhighreliability. With
MEMSpoisedtodofor mechanicswhatthetransistordidfor electronics,interestinMEMSresearchhas
dramaticallyincreased(Rai-Choudhury,1997).

MEMStechnologymayallowfree-ranging,autonomousrobotstoenterthemicrodomainandperform
usefulworklikecleaningourbloodveins,repairingbrokennerves,repairingtinydefectsin ICs,
scrubbinginternalcomponentsof achemicalornuclearplant,or performinganymultitudeof other
microdomaintasks(Rai-Choudhury,1997).

Withtheintegrationof sensing,actuation,andsignalproceedingintoasingleminiaturesolid-state
device,MEMSdevicescanoperateatlow powerandbemanufacturedatlowcost.Thesecapabilities
will allowentirelynewsolutionsto bedevised,suchasminiatureweatherstationsandmicroanalytical
instrumentation(Malafsky,1996).
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Figure 2. Precision MEMS gears�Courtesy of Sandia National Labs.

MEMS can be made cheaply because they build on the knowledge, experiences, and infrastructure of the

existing IC manufacturing field (Rai-Choudhury, 1997). The general manufacturing process of ICs, by

successive deposition, photo patterning, and then etching of thin films on silicon, is directly translated to

the MEMS manufacturing world (Sze, 1994). In the area of MEMS, these same IC fabrication sequences

are used to etch mechanical and electrical structures.

Additionally, batch fabrication has also reduced the unit cost of IC chips. When ICs are batch-fabricated

with no individual assembly or manipulation required, the cost of building just one or a million

transistors on a single wafer is essentially the same (Sze, 1994). Due to improvements in processing

technologies, research and development of micromechanical devices has exploded since the early 1990s

(Rai-Choudhury, 1997). In the ensuing years, electromechanical systems were routinely fabricated at the
micron scale. The result was a whole new class of sensors and actuators that perform common tasks on

smaller scales and are readily suited for mass production (Mehregany, 1993).

Paul Saffo, Director of the Institute for the Future, in Menlo Park, California, suggests that this

inexpensive technology will increase overall efficiency in many different segments of our economy. For

example, a wireless network could be cheaply and efficiently embedded in every manufacturing device at

a plant with sensors that report back to a central unit on how well production is progressing. Saffo

indicates that these inexpensive, but highly reliable systems could pave the way toward incredible

manufacturing efficiencies, mass customization of goods, and "consumer connectivity like you never

imagined" (Weinberg, 1999).



TheMEMSfieldhasgrownrapidlyin thelastdecadeandisnowestimatedto haveamarketof $6-$14

billion. This growth is partially due to its use of the large IC manufacturing base, which allowed new

device designs to be quickly and inexpensively built and tested (Wise, 1991).

MEMS can be used to perform the tasks of macroscopic devices at a reduced cost and with little to no

loss in performance. Actually in some instances, MEMS-based devices have outperformed their

traditional counterparts (Malafsky, 1998). By using simple mechanical structures and tailoring ICs to

suit specific tasks, designers have seen drastic reductions in device scales (size/weight). Their size alone

makes MEMS attractive within the automotive and aerospace industries (Malafsky, 1998). But more

promising than reductions in size, reductions in costs can provide commercial feasibility in a variety of

applications. By combining increasing throughput with fixed cost structures, manufacturers can linearly

reduce prices by a comparable production increase (Rai-Choudhury, 1997).

1.2 CURRENT TECHNOLOGIES

Understanding the stated advantages of MEMS, designers have started developing a range of products to

suit commercial needs. The first major MEMS to gain commercial feasibility were accelerometers,

which were pioneered to provide zero-fault airbag deployment systems (Trimmer, 1997). Widespread

introduction did not take place until Chrysler introduced them in their American-made vehicles in 1989

as a result of government and consumer group pressure. Integrating a diagnostic circuit into a sensor,

engineers were able to produce a device that could not only sense acceleration but that could also detect

internal failures. Replacing a faulty system based on ball bearings and plastic tubing that was prone to

misfire, these new devices became the automotive industry's standard (Payne and Dinsmore, 1991).

Building from the technological, as well as commercial, success of these initial designs, engineers have

developed a wide variety of MEMS motion sensors. Recently, research has been conducted into

producing micro-gyroscopes as part of a fully integrated inertial reference unit. Development has also

commenced on micro-seismometers and micro-hygrometers that could provide miniaturized weather

stations when incorporated with accelerometers (Coiclaser, 1980).

Current MEMS work is also progressing in the microprocessor environment. Given the power

dissipation requirements of the average current-market microprocessor exponentially increasing with

time, research has begun to find better ways to conduct heat away from ICs (Rai-Choudhury, 1997).

Using MEMS, it may be possible to take point contact voltages and current measurements on the

microprocessors real time, so that active cooling can be appropriately applied (Martinez de Aragon,

1998).

A promising field within MEMS is optical devices where, for instance, digitally controlled MEMS

television sets can be created. Using micro-mirrors placed on top of memory arrays, researchers have

developed a television projection unit on a semiconductor wafer that has all the functionality of a

traditional television tube (Helvajian, 1995).

Mechanical MEMS sensors can be used to monitor shock and vibration in all phases of a system's life.

For example, as any system is being built, components and subsystems are transported between

manufacturers, integrators, and installers. Shock and vibration damage can occur during any of these

trips that can cause significant damage that could be sensed and recorded by embedded MEMS devices

(Robinson, 1995).
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Forthebiomedicalarena,MEMSdevicescanbeusedtobothmonitorapatient'sphysiologyandto
augmenthumancapabilities.In fact,infusionof MEMStechnologyinmedicalapplicationswasoneof
theearliestcommercialsuccesses.Millionsof disposablebloodpressuresensorsareusedannually
(IEEE,1995).However,medicalapplicationsposeadditionalchallengesto MEMStechnologybecause
of theneedforcompatibilitywithhumanbiology,in somecases,long-termcompatibility.These
compatibilityfactorsincludematerialproperties,electrichazard,energysupply,andheatdissipation.
MEMSdevicesareenvisionedfor complexapplicationsinsensorysubstitution,drugdelivery,organ
substitution,andneuralinterfaces(Dario,1995).

Specifically,in theopticsarea,theUniversityof Rochester,theNationalScienceFoundation,the
NationalEyeInstitute,andBausch& Lombareconductingjoint researchtodevelopanadaptiveoptics
devicethatcancorrectvisualdistortionsin theeye.Withthistechnology,subtleimperfectionsthatwere
evenunmeasurablejustafewyearsagocanbecorrected.Correctingtheseimperfections,evenin a
personwhohas20/20vision,canresultin greatlyimprovedvision.It maybepossibletocorrect
anyone'svisionto20/10.Lookingthroughanadaptiveopticsdevice,everythingbecomessharperand
clearer.Specifically,imperfectionsarecorrectedwithMEMSmirrorsthatcanbendandcustomizethe
shape.Thesubtleshaping,donein responsetothecustomizedmeasurementsof theindividual'seye,
altersthelightin suchawaythatit exactlycountersthespecificdistortionsof theperson'seye
(Williams,2000).

MEMSdevicesarealsobeingdevelopedformanycommercialandgovernmenttransportationuses.
Thesefunctionscanbegroupedintofourmainareas:guidanceandcontrol,propulsionandpower,
communications,andsensing(Kukkonen,1997).SensingcapabilitiesthatcanuseMEMStechnology
includepressure,hygrometer,windvelocity,massspectrometer,opticalspectrometer,andchemical
analyzers.Forguidanceandcontrol,MEMSaccelerometers,gyroscopes,magnetometers,andmicroflaps
will berequiredfor systemdevelopment.Micro-thrustersandmicro-thermoelectricandphotoelectric
generatorswill beneededfordevelopmentof MEMS-basedpropulsionandpowersystems(Malafsky,
1998).In addition,MEMSsensorscanbeusedtomeasure,forexample,agivensystem'sperformance;a
patient'sphysiology;orevenplanetaryandmeteorologicalsensing(Kukkonen,1997).

Inthefast-growingareaof transportation,inertialguidanceunits(IGUs)canbeminiaturizedwithMEMS
technology.AnIGUiscomposedof bothgyroscopesto measureangularmotionandaccelerometersto
measurelinearmotion.Theaccuracyrequiredof thegyroscopesandaccelerometersdependsstronglyon
theapplication(George,1998).Themostdemandingapplications,suchasinsubmarinesand
intercontinentalballisticmissiles,requireextremelylowdrift ratesbecauseof thelongmissiontimeand
thegrowthof errorwithtimesquared(Yazdi,1998).

AnotherareainwhichMEMSresearchanddevelopmentisrapidlyprogressingisspace--wherelow-
cost,high-reliability,small-size,low-powerMEMScanhavedramaticbenefits(Malafsky,1998).NASA
hopestoeventuallyreplacethelargesatellitesthatexploreoursolarsystemandbeyondwithminiaturized
spacecraft(Malafsky,1998).Witheverypoundsentto Marscostingupwardsof onemilliondollars
(consideringdevelopment,launch,operationalcosts,etc.),thepotentialof sendingafully integrated
spacecraftweighingjustahundredpounds,insteadof severalthousands,offerssubstantialbenefits
(Stark,1999).Thisisvitalconsideringthecurrentfederalbudgetaryconstraints.Inaddition,byusing
MEMStechnology,NASAwill beabletoembedmanyvaryingsystemsintoonemission,thereby
gainingmoresciencewith thesameinvestment(Matafsky,1998).



Activecontrolof aircraftandspacecraftisalsopossiblewithMEMSdevices.A MEMSdeviceusingan
on-chipactuatorasamicroflapcancontroltheturbulentflowoverawing. Also,anon-chipshearstress
sensorcanmonitortheflowdynamics.Withintegratedelectronics,thesesensorscouldprovidethe
analysisandfeedbackcontroltothemicroflap(deGroot,1998).

Spacecraftdevelopmentcouldsignificantlybenefitinmanywaysfromtheinfusionof MEMS
technology.WiththemuitidisciplinaryapproachtoMEMSdevelopmentandincorporation,complete
spacecraftthatareentirelycomposedof MEMS systems could soon be created and deployed.

1.3 PROBLEM DESCRIPTION

An important part of any development process is being able to quantify the reliability of the device at the

conceptual design phase. At the conceptual design phase of a project, before the MEMS devices are

actually built and tested, traditional methods of quantifying reliability are inadequate because the device

is not in existence and cannot be tested to establish reliability distributions. Design engineers require

amethodology for estimating MEMS reliability. Within this research, a novel approach using neural

networks was created to predict the overall reliability of a MEMS device based on the device's attributes.

Since MEMS research is still in its infancy, the need for defining issues and developing reliability tools

is critical. The goal of this research was not just to provide reliability modeling techniques for system

implementers, but also to provide an analysis tool for developers at the conceptual design phase of a

MEMS project. Given the commercialization of MEMS, reliability issues (which have been previously

overlooked) will become one of the main emphases of MEMS research. To ensure commercial

feasibility, reliability issues must be raised in unison with the development of MEMS.

In confronting the issues of MEMS reliability assurance, developers will certainly have different

requirements. For example, a crewed Mars mission will have a different set of requirements and

specifications than an electronics device designed for home use, but there will be similar methodologies

for assessing and quantifying the reliability of both. This research is designed to use basic similarities in

design requirements to provide a means of developing MEMS reliability modeling. To quantify the

reliability of a MEMS component, we must consider not only the device itself, but the entire process

surrounding the part, from conception, design, fabrication, testing, and packaging schemes, and

ultimately to the environment in which the device will operate. This means that the development process

must be qualified and effectively modeled, including the fabrication process, quality standards, and

fabricator's experience. In addition, the design must be verified, and the packaging certified.

A goal of this research is to develop a technique to quantify overall risk and reliability of a proposed

MEMS device before it is actually created. To guide MEMS process development through reliability

evaluations, we must quantify MEMS reliability by evaluation and analysis of devices, test structures,

and materials. This reliability estimate must be based on data available at the conceptual design phase of

a project---data about the fabrication process, design characteristics, physical attributes, and performance

expectations from the device, including parameters related to the operating environment. Neural

networks may provide an ideal mechanism to translate these attributes into a predictive reliability

estimate.



1.4 A PROPOSED SOLUTION

The objective of this research was to provide reliability modeling techniques for MEMS devices at the

conceptual design phase using neural networks. The general methodology for quantifying reliability of a

MEMS device is as follows. First, attribute data (those that do or might have a correlation to overall

reliability, i.e., fabrication process details, physical specifications, operating environment, property

characteristics, or packaging) and reliability data are collected for MEMS devices. These data are

randomly partitioned into training data (the majority) and validation data (the remainder). A neural

network is then applied to the training data (both attribute and reliability data are used to train the

networks)--the attributes eventually become the system inputs and reliability, the system output. During

the training process, the neural networks will find the correlation between the attributes and the

reliability estimate. After the networks are trained, the validation data are used to verify that the neural

networks provided accurate reliability estimates--independent validation that the neural network is

accurately predicting reliability. Now, reliability of a new proposed MEMS device can be estimated by

using the appropriate trained neural networks.

In addition, these neural networks can be used in the design process to optimize the overall reliability,

since the networks can provide insight on what design, fabrication, and operating attributes are

significant determinants of overall reliability (can easily perform sensitivity analysis with the results of

the modeling).

1.5 INTEGRATED MEMS EFFORT NEEDED

Large MEMS efforts are under way in the Department of Defense, Department of Commerce, NASA,

Department of Energy, and in the European Space Agency. In some cases, NASA has already started

collaborative relationships with these other agencies (Malafsky, 1998).

There are many roles for corporate and government agencies to fill in the MEMS technology field,

including basic research and development, technology prototyping, field-testing, and operational use. All

of these efforts will help MEMS reach its potential and promise.

Despite the many successful prototypes, MEMS devices must still make the difficult transition from

research and development to a completed product. This transition introduces several new issues that

must be addressed. Products must not only satisfy an operational need, but must be functionally reliable,

withstand the rigors of deployment, maintain sensitivity and resolution in an operational setting, and be

manufactured at a competitive cost (Malafsky, 1998). MEMS reliability estimation and modeling is a

key portion of this effort.

1.6 RESEARCH OVERVIEW

The purpose of the research is to develop and investigate the feasibility of creating a predictive tool for

MEMS reliability using neural networks. This research emphasizes reliability estimation and prediction

for MEMS devices at the conceptual design phase where traditional methods to quantify reliability are

infeasible. A new approach using neural networks was created to predict the overall reliability of a

MEMS device based on its attributes including design criteria, physical specifications, fabrication

method, packaging of the MEMS devices, and details of the operating environment. The developed

neural network heuristic will minimize the error in estimating the reliability of a MEMS device by



mappingtheseselectedattributesto areliabilityvalue.Theneuralnetworkmodelwill revealany
correlationbetweentheattributesandreliability.

Section2will analyzetheproblemanddiscussthemethodologyusedto deriveasolution.Specifically,
theapproachof usingneuralnetworkswill bedetailedwithdiscussionsintothedifferenttypesof
modelingnetworksthatareusedin thisresearch.Section3presentstheresultsof modelingMEMS
reliabilitywithneuralnetworks.Also,thefeasibilityof thisapproachwill bediscussed.Finally,Section
4 will summarizetheresearchanddrawconclusionsfromthemodeleddata. InthisSection,anyareas
thatcouldbefurtherresearchedwill beoutlined.TheAppendixcontainsall therawdatathatwereused
totrainandtesttheneuralnetworks.



SECTION 2: METHODOLOGY

The research will establish a reliability estimation and prediction scheme for MEMS devices at the

conceptual design phase using neural networks. At the conceptual design phase of a project, before the

MEMS devices are actually built and tested, traditional methods of quantifying reliability are inadequate

(device not in existence and cannot be tested to establish reliability distributions). A novel approach

using neural networks will be used to predict the overall reliability of a MEMS device based on its

components and each component's attributes.

The model will extrapolate reliability from previously tested, but similar, MEMS devices. High-level

system attributes that will be modeled include design attributes, physical characteristics, material

property characteristics, fabrication environment, fabrication technique, quality level, testing and

validation level, packaging, and the environment the device will be used in. A good modeling scheme

must have the characteristics shown in Table ! to provide acceptable results.

• Dynamic - the model must be able to adapt and change as new information is added

• Robust - the model must function in areas outside of the input data regime (training sets)

• Relevant - the model must provide information that is both informative and accurate

• Objective - the model must not be too reliant on subjective criteria

• Comprehensive - the model must provide an accurate and complete picture of the

relationship between the input parameters and output

Table 1. Model Criteria

2.1 GENERAL MODELING APPROACH

The general approach to developing neural networks to predict MEMS reliability consists of

decomposing the system to its component level (gears, gyros, springs, etc.), then selecting which MEMS

component attributes have a correlation to its component reliability. For this analysis, humidity,

operating frequency, resonant frequency, spring quotient, and force component were all selected as

MEMS microengine attributes to be modeled. Due to the limited access to sufficient data, only this set

was initially used. However, in subsequent research, a more comprehensive set of MEMS attributes
should be tested and modeled. Next, data on the selected attributes and the overall component reliability

(failure times) are collected through a systematic testing approach. In total, 787 MEMS microengines
were tested and used in this research. The failure data are collected and then segregated into similar

sets----data whose input MEMS attributes are similar. These groupings of data are then individually fit to

different types of probability distributions to evaluate the best fit. The most accurate probability

distribution for the MEMS microengine failure data will be used as the model output.

While evaluating the different probability distributions, we observed that some of the data demonstrated

bimodality. To accurately model this feature, the output of the network was modified to accommodate

two distributions (labeled the ,pper and lower). For those groupings of data that were unimodal, the

distribution was duplicated for both the upper and lower output parameters during the training phase.



Themicroenginefailuredataarecollectedandthentransformedintoaformatcompatibletothemodeling
software.Forinstance,all parametersmustbeinanumericformandmustbemodifiedaccordingly.
Featureextractionandotherformsof datamanipulationareemployedtoenhancethemodelingresults
(seesubsequentsectionsfor moredetailsontheseprocesses).

A neuralnetwork modeling software is then used to create the neural networks. We selected AbTech's

Model Quest Expert software, which is commercially available, because of the variety of the modeling

schemes it uses and for its adherence to the modeling criteria listed in Table 1. The transformed data is

randomly partitioned into two sets (training and validation). The training set of data is entered into
AbTech's software to build the neural networks. Once the trained networks are constructed, the trained

neural networks use the validation set to determine model performance. The software applies the

validation data to the trained network to predict the failure distribution (note, during testing with the

validation data, only the input data is provided to the model). After the software predicts the failure

probability distribution, it is compared to the known probability distribution. Specifically, statistical

parameters (standard deviation, R2, etc.) are calculated to compare the predicted values to the known

values for each different type of neural network being evaluated (Statistical Networks, K-Nearest

Neighbors, Regression Analysis, Decision Tree). Finally, the effectiveness of each modeling technique

is evaluated and the best modeling approach is selected.

A

I

N
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S E_.m. f_ All
Input

E _r_
Attributes

Figure 3. Methodology for developing neural nets to predict MEMS reliability.
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InFigure3,thegeneralmethodologyfor predictingMEMSreliabilityusingneuralnetworksis shown.
Therearethreemainphasestothisprocess:training,validation,anduse.Thefirst stepis togather
informationonMEMSdataalongwiththereliabilityvaluesobtainedthroughtesting.TheseMEMS
deviceswill thenbedecomposedintocomponentlevels(i.e.,gears,gyros,andsprings),andattributedata
(input)andcomponentreliabilitydata(output)will becompiledtodeveloptheneuralnetworks.The
reliabilitydataforeachtypeofcomponentwill befit toareliabilitydistribution,andthecharacteristic
coefficients(e.g.,laand_ for Normal,orc_and[3for Weibull,etc.).Thisaccumulateddatawill besplit
intotwogroups,themajorityintothetrainingset(whichwill beusedtotrainanddeveloptheneural
nets)andthevalidationset(whichwill beusedto independentlyverifythatthedevelopedneuralnetsare
accuratelypredictingthecomponentreliability).Differentneuralnetworksaretrainedandtestedfor
eachtypeof MEMScomponent(gears,gyros,springs,etc.).

Oncethetrainingsethastrainedtheneuralnetsfor eachtypeof component,thevalidationsetisusedto
verifythattheneuralnetisestimatingthecomponentreliability.Afterpropervalidation,thetrained
neuralnetworkscanbeusedasapredictivetool forMEMSreliability.

Neuralnetworksaremuchmorethangatheringasetof rawdataandfeedingit directlytoamodeling
algorithm.Successrequiresasequenceof coordinatedsteps.Theprocessofdevelopingneuralnetworks
topredictreliabilityof MEMSfollowsthesequentialstepsof (i) identification,(ii) transformation,(iii)
model,and(iv) analysis.Thesestepsarefurtheranalyzedinthefollowingsections.

2.1.1 Identify

Thisis thestepin theprocessfor identifyingandcharacterizingthedata.Thisisacriticalstepin the
modelingprocessbecausetheresultsaresodependentonthequalityandselectivityof theinput
parameters.Severalissuesarepresentinthisstepandareoutlinedsubsequently.

2.1.1.1 Data Set Identification

The first priority is to determine what data will be used to build the models ("training" data), and
determine how well the chosen model works ("validation" data). When testing the effectivity of the

models, it is extremely important to have an independent data set that contains examples that were not

used to train the models, that is why a portion of the data (randomly selected) is set aside for validation.

This verifies the ability of the models to work well on new, unseen data, as they must when they are

implemented for actual reliability prediction.

2.1.1.2 Variable Selection

Once the data set has been identified, it is necessary to determine which of the data fields will be used for

predictors (inputs) and which parameter will be predicted (output). The inputs are sometimes called

independent variables, and the output is called the dependent variable, since its value is driven by the
values of the other fields. The format of the output variable will directly affect which modeling approach

is used. New input variables can be created from existing variables to create more powerful modeling

(for more information on this process, see Section 2.1.2.3, Feature Extraction, below).

11



2.1.1.3 Data Inadequacies/Improvements

The raw data often are not ready to be modeled because of data inadequacies. Some of the common

problems encountered with data to be modeled with neural networks are discussed below. All of these

issues will be addressed when the MEMS data are transformed for neural network modeling.

Format - Data may be in text, date, or some other nonnumeric format. Most neural network algorithms

only deal with numeric fields. For example, while an input parameter to be modeled may have values of

"yes" or "no," these would have to be changed to I's and O's to be compatible with the modeling

techniques.

Representation - In some cases, it may be necessary to represent the data in a different manner. This is

often the case when dealing with categorical or nominal variables that do not have a natural ordering.

For example, the fabrication process may be an important input variable. Instead of modeling the

fabrication process of bulk micromachining, surface micromachining and mold micromachining as I, 2,

and 3, it may make more sense to represent this one variable in three separate input binary fields

(separate one for each different micromachining process). Therefore an unintended sequential relation
between the different fabrication methods is not modeled.

Null - Most neural network techniques do not deal with null values, where data are missing. There are

different methods for dealing with nulls during the transformation step of the modeling process. It may

make sense to fill in the average of the variable for any missing data, or delete any record with a null, or

possibly to interpolate the value based on neighboring records for time-series data.

Feature - There may be known relationships that are important to modeling an output that are not

represented in the original data set. For example, the operating temperature may be an important

variable, where the maximum and minimum temperatures are known and defined as input variables. In

some instances, the difference in the maximum and minimum temperatures can provide additional clarity

to the model, that the other two alone may not provide. This feature can easily be added to the original

variables by subtracting the two temperatures for each record and setting this value as a third input

parameter. Some modeling techniques, by their nature, are more adept than others at automatically

figuring out these important but simple relationships. These methods of feature extraction enable a more

robust model.

Data Distribution - Models can often be improved by ensuring that they are getting representative

example data. Some of the common distribution problems include:

Distribution of training data - sparse input data regions:

In cases where certain regions of the problem are not well represented (sparse regions), certain

sampling techniques can help compensate, for instance, over-sampling. This will ensure that the

whole modeling regime is well represented in the modeling process.

Distribution training data - skewed representation of output cases:

While good representation of data from an input standpoint is important, output data distribution is

equally important. Often a database may appear to be well distributed: however, when looking at the
distribution of its outputs, a skewed representation may exist. If most of the training examples

occupy a small subregion of the entire problem domain, the resulting model will perform much better
in this small subregion and performance will likely suffer elsewhere. Again, sampling techniques

can be used to over-sample in these sparse regions.
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Outliers:

Outliers are data examples that fall far outside the majority of the database. Outliers represent either

valid data points that are simply anomalous situations or may identify areas in which the raw data

was incorrectly produced or recorded.

The presence of outtiers in training data can skew a model to "capture" the outlier, and can skew

performance results. Approaches to dealing with outliers include eliminating them from the
database, over-sampling to create additional examples in the sparse region of the outliers and training

multiple models for the more heavily populated regions and different models for the sparse regions

containing outliers.

Differences between training and validation data:

For example, if the data set is partitioned into two sets--one for training and one for validatiow--it is

important to verify that the two data sets are characteristically similar by comparing their statistical

parameters. If the two databases are significantly different (as indicated by their means and standard

deviation, etc.), then the model is being tested with data statistically different than with which it was
trained. Therefore, care must be taken when partitioning the data to ensure the similarity of the two

data sets.

2.1.2 Transform

Properly representing and transforming data can make the difference between success and failure in the

modeling process. There are several different approaches to coding and representing data so that certain

characteristics are more obvious to the subsequent modeling algorithm.

2.1.2.1 Data Coding and Representation

For modeling which requires a numeric data form, the manner in which symbolic data is converted from

a symbolic form to numeric form is critical. In general, variables that have symbolic values in their raw

form fall into two categories: ordinal and nominal.

Ordinal - There is a logical, sequential ordering to the variable. Examples include operating temperature

(very cold, cold, room temperature, warm, and hot) and many types of ratings (excellent, good, fair,

poor). In this case, an integer value can be simply assigned to the original symbolic values (excellent =

4, good = 3, etc.), which will capture the ordinal nature of the data field.

Nominal - There is no inherent ordering: nominal values simply imply labels or states. The different

symbolic values merely represent different cases that cannot be compared to one another on any logical

scale--ahe ordering of the values is irrelevant. An example of a nominal variable is religion. Assuming

no bias, a model based on Catholic = 1, Muslim = 2, Hindu = 3, and Buddhist = 4 will be equivalent to a

model with the labels renumbered. Thus, assigning sequential integer values would be incorrectly

implying to the modeling algorithm that examples with higher values were somehow "more or less of

something" in a physical concept. In actuality, different symbolic values for nominal variables simply

indicate different cases, and do not imply any relative importance.

Another class of variables that require numeric coding is cyclic variables, such as Day of Week or Day of

Year. Cyclic variables cannot be coded numerically with sequential integers due to the discontinuity at

the ends of the scale. For instance, an integer coding of the symbolic variable Day of Week where

Sunday = 1, Monday = 2, etc., is incorrect since there is a discontinuity between Saturday and Sunday.

13



ThefactthatMondayfollowsSundayisrepresentedbythefactthat2follows!. However,Sunday
followsSaturday,but1certainlydoesnotfollow7.

Codingcyclicparametersusingdummyvariablescanovercomethisdiscontinuity.ForthevariableDay
of Week,sevennewdummyvariableswouldbecreatedfromtheoriginalvariable,therebyeliminating
thediscontinuityattheSaturday/Sundaytransition.However,thecyclicnatureof thisvariableis lostin
thisapproach.A differentapproachis torepresentthedaysof theweekalongaunitcirclein two-
dimensionalCartesiancoordinates.Eachvaluewouldbemappedto a(x, y) locationalongthecircle,
eachspace360/7(51.4degapart).Thus,if thevariableDaywererepresentedoriginallyina 1to7
format,thenforeachrecordwewouldconvert:

Day_x= cosl[(360/7)(Day)]

Day_y= sinl[(360/7)(Day)]

Thismethodpreservesthecyclicalnatureof thevariable,withconsecutivedaysbeingclosesttoeach
other,withouttrippingovertheweektransition.

2.1.2.2 Data Sampling

Data sampling is used in situations where certain portions of the database are either under- or

overrepresented. Sparse and/or underpopulated regions will tend to bias some of the modeling schemes.

Data sampling simply duplicates data examples according to predefined criteria. It is often beneficial to

add noise when duplicating data, since it adds robustness to the model.

2.1.2.3 Feature Extraction

As discussed earlier, the transformation of the data before modeling is often the most critical step in

using neural networks. Another critical step in the modeling process is extracting new features from the

data to use as input variables.

Feature extraction transforms raw data into a more useful form by creating new input variables from

existing variables. It is important to realize that feature extraction does not "create" new information.

Rather, feature extraction "massages" the information in the raw data and presents it in a new light to the

modeling algorithm. Feature extraction is an extremely useful method for evaluating what is known

about a problem. This prevents the learning algorithm from having to determine important relations in

the data that are already known.

Sometimes, the characteristic that a particular feature extraction algorithm captures has some physical

significance. Often however, it is difficult or impossible to attach real-world meaning to a specific

feature. Although a feature may not have physical significance or meaning, it may still be useful for

modeling the patterns and trends in the data.

For static decision problems the most common form of features are transforms of existing variables. An

example of a single-variable feature is the natural logarithm of an existing variable. Logarithmic features

are often useful for reducing the dynamic range of variables and to transform the exponential nature that

sometimes exists in the data to a more linear form, which is easier to model.
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2.1.3 Model

Once the data have been preprocessed and placed into the proper formats, they are ready to be mined for

information. The neural networks models are trained to classify or estimate outputs. Several different

mining schemes should be evaluated to determine which neural networks provide the best performance

for the given type of data.

The Model step consists of defining neural networks for the selected problem type. This involves:

!. Designating the inputs and the outputs to the model

2. Identifying the training and validation sets

3. Selecting the mining strategies, as well as the modeling parameters

4. Executing the resulting model

5. Analyzing the resulting models

6. Applying the best mining strategy to subsequent data

Table 2. Modeling Steps

2.1.4 Analyze

When analyzing the results of the modeling, it is very important that the performance of any model be

determined with data that were not for training. Testing models on unseen data more closely represents

the manner in which the model will be used in practice (i.e., on data that were not used for training) and

is therefore a more realistic evaluation approach.

2.1.4.1 Estimation Problems

After modeling with neural networks, error statistics should be calculated to determine a comparison

measure of how well each model is working. The error statistics are calculated by subtracting the model

estimate from the actual value of the output to determine the error for each example. Then, aggregate

statistics can be calculated that describe how well the model performed on the data sets. The following

types of error measures will be calculated to determine a comparison of how well the different modeling

schemes are working:

Average Absolute Error - This is an average of the absolute error of each sample. This evaluation

criterion measures the overall accuracy of the model.

Maximum Absolute Error - When large individual errors are intolerable for critical systems, this is a key
evaluation metric that should be minimized.

Standard Deviation - This metric is a measure of the variance of the error. The larger the variance of the

error, the less consistent the model is over all ranges of values. This should be minimized and looked at

in conjunction with the previous two statistics.

Coefficient of Determination (R:) - This metric is a measure of the correlation between two data sets, or

between the model estimates and the actual values. R-_represents the proportion of variation in the

dependent variable that has been explained or accounted for by the regression equation. The R" value
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mayvaryfromzerotoone.R-"= 0 indicatesthatnoneof thevariationin Y isexplainedbytheregression
equation:whereasR_"= 1indicatesthat100%of thevariationof Y hasbeenexplainedbytheregression
equation.

It isalsooften useful to graph the actual values versus the model estimate values, or the actual values

versus the errors to see if there are larger deviations based on the actual value.

2.1.4.2 Classification Problems

Some of the metrics used for estimation types of problems can also provide knowledge for classification

problems. However, it is usually more productive to look at the actual classification statistics, and
minimize the number of incorrect classifications.

The key to any machine-learning strategy is the learning algorithm itself. It must be able to generalize

from, and not memorize, numerical examples of a problem domain. The model should discover

relationships found within the data to perform well for not only the training data but also independent

(i.e., real-world) data. The main reason for this requirement is that all data contain uncertainty. Noisy,

missing, conflicting, and erroneous data are manifestations of uncertainty in numerical examples.

An effective machine-learning algorithm must learn relationships and avoid memorizing noise. And to

be practical, it must achieve these goals in an automated manner.

2.2 SANDIA NATIONAL LABORATORIES MICROENGINES

The one obstacle to this research is the lack of data, both quantity and quality, that are needed for

adequate training of the neural networks. There is very little available data on MEMS reliability since

most commercial manufacturers consider their reliability data proprietary. Most universities and

research institutions do not have the quantity of similar data required to adequately model with.

However, Sandia National Laboratories in Albuquerque, New Mexico, has been manufacturing MEMS

components for several years. Sandia is very interested in MEMS technology for applications on missile

arming systems. Sandia is emphasizing MEMS research because these devices have high reliability, low

power consumption, and small size and weight.

Sandia has shown a lot of interest in the novel approach developed in this research and has graciously

made all their reliability data available for this research. Most of the reliability data are from the same

basic MEMS design, with only minor design and operating environment parameters varied. Even though

this is a limited test sample, it may provide an excellent basis to determine the feasibility of this modeling

approach. Figure 4 shows a view of Sandia's microengine.
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Figure 4. Photomicrograph of Sandia microengine/Courtesy of Sandia National Labs.

The Sandia microengine operation is fairly simple. It uses an electrostatic comb drive supplying

alternating currents to the fingers of the comb drive. First an electric charge is sent to the upper comb

elements that pull the drive up. Then this charge is released and the mechanical flexture ("restoring

springs") of the beam pulls the comb drive down to its neutral position. Next a charge is placed on the

bottom comb elements that bring the drive further down. This charge is then released and the comb drive

rises back to its neutral position, This sequence is then repeated in a coordinated fashion to drive the

shuttle in harmonic motion. Like any other mechanical oscillating system, these microengines have a

resonant frequency. The testing was done at frequencies above and below this resonant frequency. The

two shuttles (perpendicular to each other, labeled "X" and "Y" on Figure 5) drive the pin-jointed wheel,

which is connected through a hub. This wheel can then be used to drive a transmission or other

mechanical system (see Figure 5).

Restorin¢

Springs

Moving
Shuttle

Figure 5. Sandia microengine annotated/Courtesy of Sandia National Labs.
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2.2.1 Sandia's Reliability Test Equipment

To collect large amounts of reliability data, Sandia has developed a method to test multiple devices

simultaneously instead of testing each device individually. This methodology enables testing of large

amounts of MEMS devices in an efficient manner. Sandia Labs has developed a muitipart MEMS test

station, known as SHiMMeR, (Tanner, 1997).

Figures 6 and 7 show inside and outside views of this system. The SHiMMeR system allows testers to

optically inspect the test articles for functionality through a series of electrical and optical subsystems.

The electrical subsystem allows user-defined electrical signals to be sent to each test article (the

packaged MEMS parts being tested). The drive signals are sent to all of the MEMS devices. This whole

process is self-contained in an automated package that makes the whole testing sequence fairly easy

(Tanner, 1997).

Figure 6. ShiMMeR (inside)/Courtesy of Sandia National Labs.

The SHiMMeR system also has an optical subsystem including a microscope and camera which steps

from part to part to inspect the functionality of each of the test articles.

Figure 7. ShiMMeR (outside)/Courtesy of Sandia National Labs.
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Eachtestbedconsists ofa 4 x 2 array of printed circuit boards with up to 64 packages with a total of

256 parts (the current configuration has four microengines per package), see Figure 8. This arrangement

of multiple small printed circuit boards rather than one large board provides great flexibility in the

arrangement, device wiring, and signal optimization of MEMS devices under test (Tanner, 1997).

The fully computer-controlled system allows for the images to be captured at very precise instances in

time. This test equipment was used to test 787 Sandia microengines under varied conditions so lhat the

microengine's reliability could be modeled. The raw data from these tests are shown in the Appendix.

Figure 8. A Sandia microengine package (4 engines)/Counesy of Sandia National Labs.
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SECTION 3: RESULTS AND DISCUSSION

There are several different failure modes existing in the Sandia microengines. Out of all the failure

modes lound, the predominant mode is wear. The close rubbing surfaces (0.5 microns or less) of the pin

joint and hub region in the Sandia microengines create sufficient wear, which leads to failure over time.

Wear debris can jam gears or actuator arms leading to sticking and rocking of the microengines. Also,

wear particles can short electrical components and cause failure of the microengine. Or, worn

components like pin .joints can rupture and come undone after gradual degradation. In addition, particle

contamination (an insufficient clean room, or debris from the cutting process) during wafer dicing

(cutting the wafer into individual MEMS chips) can create similar problems for the microengines

(Tanner, 2000).

Stiction (adhesion of the moving parts) is another primary failure mode in the microengines. It results

from the capillary forces that exist between the microscopic parts and liquid remnants from the drying

process. Surface coatings, super-critical drying, and the use of dimples can mitigate the onset of stiction.

Stiction, in its worse form, can lead to the fusion of components. For instance, the high voltages used in

the comb drives can cause arching between the comb elements that result in a permanent weld. Guides

that prevent moving parts from actually touching can minimize these problems (Tanner, 2000).

Surprisingly, fatigue, fracture and corrosion are insignificant sources of failure in the Sandia

microengines. The most common failure modes for the microengines are summarized above. All others

only contribute minimally to microengine failure. The reason that the microengines are more resilient

against fatigue, fracture, and corrosion may be that the underlying building material for these engines is

polysilicon. Polysilicon is self-healing and will bond and repair itself as cracks form. In addition

polysilicon is not susceptible to creep. Fracture is only seen when the wear has thinned a structure (e.g.,

motor hub) to the point that a crack induces catastrophic failure.

3.1 MEMS DATA

The MEMS microengine data collected from Sandia (787 microengines, shown in the Appendix) were

used to train several different types of neural networks. The network was created to predict not just a

specific failure time (point value), but instead a whole probability distribution for failure times. The

greater resolution obtained with an entire distribution has more utility in concept analysis than a mere

random failure time. Therefore, each set of microengine data (those with common sets of input

parameters) was individually fit to separate probability distributions. After trying several different

distributions, the log-normal distribution provided the best fit to the microengine failure data. The reason

for this may be that the log-normal distribution for semiconductor devices has been realized and

empirically demonstrated for some time (Howard and Dodson, 1961 ). Its acceptability as a failure

distribution was shown by the life-test sampling plans that were developed for it (Gupta, 1962).

Therefore, it is logical that the log-normal would provide a good fit for the data. The log-normal is a

two-parameter distribution consisting of t_o, the median cycles of failure and the characteristic shape

parameter, ft.
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3.2 BIMODAL DISTRIBUTIONS

Upon closer inspection of the data, some of the resulting distributions showed a bimodal tendency---the

distribution has two regions of data concentrations. Specifically, these two modes or distinct humps in

the bimodal distributions reflect the relatively high frequencies of the two separate clusterings of data.

This bimodality of some of the data must be modeled. This was achieved by modifying the output

domain of the networks. The output, instead of containing two parameters of a single distribution, was

modified to cover two separate distributions, which would then be combined into one distribution

through a weighting scheme.

It is interesting to note that, for all the data sets that were described by bimodal distributions, the values

of G for the two corresponding modes were similar. The closeness in the value of these two cy's is

probably indicating that the underlying failure modes are the same. Inherent differences between the

parts may cause the differences between the two population means. For instance, earlier failure times

could be for the weaker parts and longer failure times for the stronger parts (Tanner, 1999). There can be

a degree of variability (small differences or aberrations in the silicon crystal or small amounts of defects

in the etching process, etc.) between the MEMS microengines, even though they are batch-fabricated in a

no-touch, automated environment. Thus, some of the microengines may be naturally weaker than others,

even though they are created under the same process. In addition, the drive signals that have been

devised were optimized for a sample set of microengines: therefore, any subtle differences (differences in

the resonant frequency, etc.) can lead to undesirable loading of the microengines during testing and a

subsequent premature failure.

To account for the possibility of bimodal distributions in the output of the neural networks, we defined

the output parameters to always contain two distributions---labeled the lower and upper distributions. In

essence, this would require four parameters (two for each log-normal distribution): these were labeled the

lower tso and (Y, and the upper tso and CY. Since two distributions were intentionally defined as the

outputs from the network, if a distribution is unimodal, then the two parameters of the unimodal were

duplicated for both the lower and upper parameters during training of the networks. If the distribution is

bimodal, then the two modes are partitioned into the upper and lower parameters and trained

appropriately.

After the networks are trained, if the output medians from the network are distinctly different (greater

than one standard deviation apart), then the output should be considered two separate distributions

(bimodai). However, if the medians of both distributions are within one standard deviation from each

other, then the medians and shape parameters should be averaged and taken as one unimodal distribution.

If the output is bimodal, a weighting system could be used to determine the influence that each

distribution has on the combined bimodai distribution. This weighting system could be devised by

determining the relative counts of each grouping in the training set--what population percentage is

represented by each of the upper and lower regions.

3.3 TRAINING THE NETWORKS

Table 3 summarizes all the microengine failure data after they were condensed into separate distributions

covering the different testing conditions. Sandia did not collect many parameters during the testing

phase; therefore the input parameters are somewhat limited. However, of the parameters collected,

several were key determinants of reliability. Humidity, the operating frequency if" ), the resonant

frequency ffl,), the ratio of the latter two (j_Tf,), the spring quotient, and the tangential force component
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imparted to the drive gear were collected and modeled (these parameters should all influence

microengine reliability).

The condensed data were directly fed into the neural networks to train the prediction scheme. Six

different neural networks were trained and then all compared to determine which networks provided the

best results (these six neural network algorithms were discussed in detail, previously). The Error

Knowledge Network (K-Net), Hybrid Knowledge Network (K-Net), StatNet, and StatNet Selected Inputs

(all forms of statistical networks) consistently showed the best prediction capabilities for the specific

MEMS training data.

I
Model

Inputs I Model Outputs

Operating Resonant f I fo Spring Tangential Lower Lower Upper Upper
Humidity Freq. Freq. Quotient Force

Comp Is° c _

35 860 1150 0.74783 1825 2.5

35 1204 1150 1.04696 1825 2.5

35 1500 1150 1.30435 1825 2.5

35 1720 1150 1.49565 1825 2.5

35 2064 1150 1.79478 1825 2.5

35 2200 1150 1.91304 1825 2.5

35 2408 1150 2.09391 1825 2.5

35 3000 1150 2.60870 1825 2.5

1.8 1720 1500 1.14667 1804 2.5

1.8 1720 1500 1.14667 1804 2.5

10 1720 1500 1.14667 1804 2.5

24 1720 1500 1.14667 1804 2.5

31 1720 1500 1.14667 1804 2.5

39 1720 1500 1.14667 1804 2.5

68 1720 1500 1.14667 1804 2.5

12i_E_1_; . 0,330 8AOE_08 _ :0;370i

_d)5 _ 0ASO 3,20E,05 _ 0_450

ZgOE_tP_- 0.510 • :ZBOE+05 0:510

3.51E+05 _ 0220 3._ E,-',-05 0220

Table 3. Parameters Used to Train Networks

Tables 5 through 8 show the comparison results (how well each network performed at predicting reliability)

from each of the different networks. Since four different output parameters were being predicted, each

output was compared separately. Table 5 shows the statistics for lower t_,, prediction, Table 6 statistics for

lower (3, Table 7 statistics for upper tsar, and Table 8 statistics for upper (Y.

3.4 COMPARING THE DIFFERENT NEURAL NETWORKS

The main comparison parameter used to evaluate the effectivity of the modeling is the Pearson

correlation coefficient, also known as r 2". We used this measure since it provides a good measure of how

well each network correlates the inputs to the outputs. The r:is a statistical procedure that assesses the

strength and direction of the relationship between two different sets of parameters (between the inputs

and output in the current modeling scheme).
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The coefficient yields a single number that can have a value between 0.0 and 1.0. The closer the value is

to 1.0 the stronger the relationship, conversely the closer the value is to 0.0, the weaker the relationship.

Table 4 suggests a qualitative meaning for ranges of coefficient values---the strength of association given

by the values of the coefficient. Any value over 0.80 indicates a strong association between the variables.

t a Indicator of

0.80-1.00

0.60-0.79

0.40-0.59
0.20-0.39

0.00-0. t9

Strong association between variables

Strong-moderate association
Weak-moderate association

Weak-weak association

Little, if any, association

Table 4. Pearson Correlation Coefficient Values

The formula to calculate 1"-'is as follows (Lane, 2000):

ZXY _XZYN ]"

F2 --

N (2rN

Figure 9. Equation for Pearson correlation coefficient.

Another comparison statistic used is the Absolute Error, which is the absolute value difference between

the estimated values and actual values. Other parameters used in the analysis include the corresponding

maximum value, the average, and standard deviation of the Absolute Error. We also used the Squared

Error in the analysis, which is just the squared difference between the estimated and actual values. Still

another comparative measure used to compare the effectivity of the models is the Normalized Root Mean

Squared. It is the square root of the sum of the Squared Error values divided by the sum of the squared

actual values. The Normalized Root Mean Squared measures the relative portion of the total value of the

data that is represented by the error. All of these comparison metrics reveal that the Error Knowledge

Network is consistently the best neural network algorithm for modeling MEMS microengine data (as

seen in Table 5 through Table 8).

The Error Knowledge network modeled lower t_()very well (see Table 5). It significantly

"outperformed" all the others (e.g., Hybrid K-Net, StatNet Selected Inputs, StatNet, Linear Regression

and K-Nearest Neighbors) considering all of the comparative measures.

The t_ value was 0.9868 for the lower tso using Error K-Net, which demonstrates exceedingly high

correlation between the inputs and the output. The next best algorithm was the Hybrid K-Net, which only

had an 12 value of 0.8183, which is still fairly good correlation. The maximum Absolute Error was almost

five times greater for the Hybrid K-Net compared to the Error K-Net. Similarly, the other comparison

statistics were several orders of magnitude worse than the Error K-Net modeling results. The modeling

approach in the Error K-Net, which uses a three-pass approach to modeling, is evidently inherently far

superior for the specific type of data involved.
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Table 5. Comparison Statistics for Lower tso

The Error Knowledge network also accurately modeled the ff for the lower distribution (see Table 6).

The/-_ value was 0.99(X) for the Error K-Net (approaching perfect correlation). This demonstrates the

precision with which the network modeled the data. The next-best algorithm was the Hybrid K-Net,

which only had an I_ value of 0.6306. All other neural networks schemes provided worse correlation,

performing at far less accurate levels.

....... ............ ........ ..... 1[

Table 6. Comparison Statistics for Lower ty

The/_ value was 0.9563 for the upper t_, using either the Error K-Net or Hybrid K-Net (see Table 7).

These results demonstrate strong association between the inputs and the output. The reason that the

Error K-Net performed exactly the same as the Hybrid K-Net is that a second pass of the Error K-Net

network was not applied.
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Max Avg
Absolute Absolute

...........Neur__.Network. ............E_r Error

Norm Root

Error

Error K-Net 2,16E+08 3.01E+07 5.85E+07 4,10E+I51:I.20E÷I6 0.1908 (

HybridK-Ne t...........................2:16_E÷OS._:.3:OIE+O75_85E+OT.;._..4.!.pE+!_5_..I_I.i20E+)6..................................................0.1908 0.956_

StatNetInputs ' 2,!8E+08 2:92E+07 5.93E+07 4.14E+15 1.22E+16 0.I9t7 0.956_

Linear Regression 4.33E_8 1.25E+08 L54E+08 3.77E+16 6.24E+16 0.5788 0.598C

K-NearestNeighbors 8.15E+08 2.16E+08 2.20E+08 9.20E+16 1.99E+17 0.9036 0.470!

Table 7. Comparison Statistics for Upper tso

The initial prediction of ts,, could not be improved upon with subsequent passes to correct any predicted

error, and therefore the initial estimate was used as the final prediction (see Figure 16 and associated

discussion). The StatNet Selected Inputs and regular StatNet provided almost the same results. However

Linear Regression and K-Nearest Neighbors were significantly less accurate (I2 of 0.5980 and 0.4709,

respectively). The other comparison metrics between the statistical network approaches (Error K-Net,

Hybrid K-Net, StatNet Inputs and StatNet) were roughly an order of magnitude better than Linear

Regression and K-Nearest Neighbors. Even though all the statistical network (i.e., Error K-Net, Hybrid

K-Net, StatNet, etc.) approaches for upper t:,, were roughly equivalent, for consistency, the Error K-Net

was used as the standard modeling approach.

The 1: value was 0.9194 for the upper (3 using the Error K-Net approach (see Table 8). This also

demonstrates sufficiently strong correlation between the inputs and the output to verify accurate

modeling (see Table 4). The other statistical network algorithms provide !2 values of around 0.785. The

1_ values for the Linear Regression and K-Nearest Neighbors algorithms were far worse. Similarly, the

other comparison statistics for the other networks were clearly less than the Error K-Net modeling

results.

A factor that may have contributed to the upper t_()and upper (3 having 12 values comparatively less than

the lower t,,) and lower (Y is that the lower values were duplicated for the unimodal case. Therefore,

there may be a tendency of the upper bimodal outputs to have adverse influence from the lower statistics

(where the unimodal case was duplicated). However, the modeling results demonstrating overall

accuracy in its prediction of all the output distributions validates this general approach.

For the types of correlations existing in the microengine data, the inherent capabilities of the Error K-Net

for modeling the given data suggest it should be the standard modeling approach. Modeling with this

approach yielded better results and consistently outperformed all the other neural network algorithms.

The subsequent analysis will concentrate on just the Error K-Net approach.
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Table 8. Comparison Statistics for Upper cr

Table 9 shows statistics both on the input data and metrics related to the model's output for the Error K-

Net. It also shows statistics on the error and squared error (from the model's prediction). The average

Absolute Error ranges from just one to several orders of magnitude less than the average of the model's

output; therefore, the error can be considered relatively small. As discussed previously, r: for all four

outputs is quite good, all greater than 0.90 with two approaching 0.99. As seen in Table 4, these values

indicated a strong correlation between the network inputs and output.

Error, Maximum Absolute

Error. Standard DeViation

0.03530

,quared Error, Standard Deviation 1.965E+09 0.00070 L224E+I6 0.00390

Sc_uare_l Error, No_ Rootof__,__ 6[?_2 0.04410 1.917E-01 0.12260

Network Output, Me_ 5i =_0.33090, !.368E+08 0.35220

Network _Davlation 3:89_10.16_0 3:15IE÷08 0.16730

f_ 0.98670 0.99000 0.95620 0.91940

Table 9. Data Statistics for Error K Network (selected)
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3.5 THE SELECTED NEURAL NETWORK

Since the Error K-Net provided the best modeling for MEMS microengine data, this section will outline

the details of the neural network transformations. The Error K-Net consists of a three-passes approach

using separate networks. An initial prediction for the output parameter is made from the first pass of the

network. Next, a second pass of another network is used to predict the error estimate in this first

prediction. A third and final pass of a separate network is made to adjust the initial estimate by a factor

based on the error estimate to create the final prediction.

The Error K-Net developed only required three inputs---humidity, resonant frequency and/TS,---to

estimate the initial prediction for lower t s.. Figure 10 shows the details of the network, specifically, how

the inputs are transformed to make this initial prediction. The correlation equation is nonlinear and

three-dimensional.

x2

x 2

11
=.0 739_07933 1+

0.3996"X12 - 0.3497 *X13 - 1[ _e dicted ts0
0 ._507*X2*X 3 + 0.2777'_32

LEGEND

X l= Humidity

X_ = Rescnaant Freq.
X3=.fffo

Figure 10. Initial prediction for lower tso.

Once an initial prediction estimate is optimized for t_,,,an error estimate is formulated to determine a

correction factor.

= .15.1277- 78.672"x z+ 140.5406"x12 +

47. l 187"xz3- 31.7273"x 2 - 207.6982 *x z"x _

+ 9.7078*xl_*X2 - 2.6114*X_ 2-

13.025 *".:Cz*X:22 - 167781 *X_3

Error
"_ Estimate

LEGEND

Xz.= Operating Frequency

X 2---Initial Predicted %0

Figure 11. Error estimate for lower t_o.

Figure 11 shows the derived equation to estimate the error in the initial prediction of tso (Figure !0). The

functional inputs for this transformation are operating frequency and the initial prediction found through

the formula in Figure 10. Now the initial prediction (Figure 10 transformation) is adjusted using the

error estimate (Figure 11 transformation) to make the final prediction for ts_ as seen in Figure 12. This

transformation is a simple linear two-dimensional equation.

X2Xz""_1__ = 08695"Xz" 0 4147"_r_
Final %0 LEGEND

X I= InitialPredicted t50

)_ = Error E_mate

Figure 12. Final prediction for 1ower tso.

27



Figure 13 shows the details of the network for the initial prediction of the lower (Y, how the inputs are

transformed into the output. The correlation equation is nonlinear and two-dimensional. As seen in

Figure 13, the only parameters that have influence on the initial prediction are humidity and fir,.

It--= -0.2779 *Xz2 + 0.1426 *'.'X23

X2 Predicted o

LEGEND

X z= Humidity
X2 =.fifo

Figure 13. Initial prediction for lower ty.

Once an initial prediction estimate is optimized for O', the error is calculated in this estimate using the

second-pass network shown below. Figure 14 shows the optimized scheme to estimate the error for the

first prediction of (Y (see Figure 13 equation). The functional elements of this transformation are

humidity,JTjl, and the initial prediction found through the Figure 13 computation.

= 404.5169 - 4.2847"X 1- 1114.2113"Xz2+

16.6703"i£13- 8.3725* X.,a - 2.9788"X22 +

572.9483 * Xa x - 2994.165" X 3-

101 0028 *XI2*X 3 + 59.4039 *X,2*X 3 -

16.77g 1*X,aa *X 3 - 166.6626"X_ +

15.2316*Xl*X32 + 56.6804*X.,a*X32

LEGEND
X z = Humidity

X2 =Pfa

X 3 = Initial Predicted o

Figure 14. Error estimate for lower tY.

Now the initial prediction (Figure 13 transformation) and error estimate (Figure 14 transformation) are

combined to make the final prediction for O"as seen in the Figure 15 equation. Again, this final

transformation uses a simple two-dimensional linear equation.

X2

Final o

LEGEND

X z = Initial Predicted o

Xa = ErrorEstimate

Figure 15. Final prediction for lower ty.

The Error K-Net for predicting the upper t_,,did not benefit from the second pass (used for correcting any

predicted error in the estimate). This error is too random to accurately predict or model. Therefore, the

initial uncorrected estimate for ts, was the best estimate and could not be improved upon. Figure 16

shows only the first pass of this neural network (which now becomes the final transformation equation).

This network has two nodes and both are nonlinear and multivariant. The operating frequency and spring

quotient were the only factors that effected upper mean life, ts,,.
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I[
I[

xo "-v ll
0.3772 *_[22

X3 _. = o.sg93*X1 +

II 32723_fl- I_Final tso

LEGEND

X 1= OperatingF_eq.

X 2 = Spring Quotient

X 3 = 0 _p_ A

Figure 16. Final prediction for upper tso.

Figure 17 shows the details of the network for the initial prediction of the ul?per (Y, in detail, how the

inputs are transformed into a (Y prediction.

lk= 0.9117 + 1.1 IS*X 2 + 1.817.*xl*X2 - Initial

X 2 0 4295"X2_ + 0.3289":',','X23 Predicted o

LEGEND

X I = Resonant F_eq.

X 2 =J_f_

Figure 17. Initial prediction for upper c7.

The correlation equation is nonlinear and two-dimensional. The only parameters that have influence on

the initial prediction of upper (Y are resonant frequency andfff,.

Once an initial prediction is optimized for O, the error in this estimate is calculated using the second-pass

network. This second-pass network has two nodes, both are multivariant and nonlinear. Figure 18 shows

the optimized scheme to estimate the error in the O" prediction (Figure I7). The functional elements of

this transformation are humidity and resonant frequency.

X 2

=-0.5929+ I[ Ou_ut AX 3

1.6_4t*x_+ l! __.
0.6304.x1_- II r

= -03903 +

2.7184"X 1-

1.6501 *'Xq3 -
0.6684"X2 +

1.3238 *XIa*X 2

.._ Error
Estimate

LEGEND

X I= Humidity

X 2 = Resonant Fxeq.

X 3 = OUtlOUtA

Figure 18. Error estimate for upper (7.

Now the initial prediction (Figure 17 transformation) and error estimate (Figure 18 transformation) are

used to make the final prediction for (Y as seen in Figure 19.
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x1=l0,,7 1044,7,, 
X2

Final (7
LEGEND

XI=InitialPredictedo

X2=E_rorEstima_

Figure 19. Final prediction for upper ¢7.

3.6 THE EFFECTIVITY OF THE ERROR K-NETWORK

Statistical parameters were used to develop the actual versus predicted charts seen in Figures 20 through

23. Figures 20 shows that the neural networks for the lower t_()were modeled quite effectively and

provide accurate predictions. There are very few deviations from the diagonal congruency line.

Figure 20. Actual vs. estimate for lower tso.

The congruency line (diagonal line) represents perfect correlation (where prediction exactly matches the

actual values). As the data seen in Figure 20 show, there is not much deviation from the idealized case.

The average error in estimation was around 6.9%.

The correlation between actual versus predicted values for the lower o is even tighter (see Figure 21 ).

There were two data points that were slightly off, but the majority of the predictions were near perfect.

Errors in the collection of the data or other anomalies may explain these two minor deviations. The

average error in the estimation was roughly 1.78%.
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Figure 21. Actual vs. estimate for lower tT.

Figure 22 shows the correlation graph between actual and predicted values for the upper tsar. There is

only one data estimate that has a significant error in its prediction of t._,. This anomaly may be just an

aberration or as before, the data may have been incorrectly collected. In addition, the errors were too

random (as discussed in the previous sections on modeling upper t.s_) to effectively correct them during

the second pass of the Error K-Net algorithm_this erratic nature is evident in the graph. Additionally,

some degree of error in the modeling may have been introduced by duplicating the lower distribution

parameters (t_o and (Y) in the upper for the unimodal case.

813E +8

60E*b

Actual

Figure 22. A ctual vs. estimate for upper t _o.

The one prediction where there is a significant deviation between the predicted and actual values is

highlighted (see the circled data point in Figure 22). This data point is one in which the difference
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between the upper and lower distribution statistics were quite significant (three orders of magnitude).

This may help explain why there was a larger error in predicting the upper ts, for this one point (cross

correlation effects previously described).

As the data show in Figure 23, there is a fair amount of scatter between the predicted and actual values of

the upper _----slight deviations from the idealized case. However, there is sufficient accuracy in
12prediction as evidenced by an value of 0.9194.

All of the significant deviations were in cases in which the lower distributions were duplicated for the

upper (all marked with a circle). Besides these four data points, the data were modeled well as

demonstrated by the closeness of the data to the diagonal congruency line.

As previously discussed, a reason that the correlation graphs seen in Figures 22 and 23 (upper cases) are

not as accurate as the graphs for the lower parameters may be that the unimodal data were duplicated for

the upper parameter in certain cases. However, even though irregularities may be introduced into the

modeling by using this approach, the overall effects are positive and the benefits seem to far outweigh

any detriments.

O..

O7

0b

05

i] 4

O3

02

O_

0_ 02 OB 04 05 06 07

Actual

Figure 23. Actual vs. estimate for upper (X

3.7 TREND ANALYSIS WITH NEURAL NETWORK PREDICTIONS

After modeling was complete, the neural networks were used to determine the influence that the input

parameters have on the corresponding four reliability output parameters. For each of the analysis graphs

shown (Figures 24 through 33), a different input parameter was varied while the others were held

constant. This allowed a comparison to be made for each parameter and gained us insight into the

sensitivities and effects that the selected (varying) parameter has on the overall reliability of the MEMS
device.

In Figure 24 (lower tst, Network), the humidity was varied while other input parameters were held

constant. Specifically, the operating frequency was set to 1720 Hz, resonant frequency set to i 150 Hz,
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fifo ratio set to 1.496, spring quotient set to i 804, and the tangential force component set to 2.5. The

graph shows the interrelationship between humidity and the lower 15o,specifically, how a very low

humidity has a dramatic positive effect on the life of a MEMS microengine. There is a sharp decrease in

life as the humidity is increased (probably caused by stiction and adhesion). In addition, there is a slight

increase in the median life between humidity levels of 30% to 60%. Since the networks were trained

with a relatively small sample size, these slight deviations may actually be insignificant. However, the

general conclusion of low humidity increasing the reliability of the MEMS microengines will apply.
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400000

300000

200000
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0

Lower tso Prediction vs. Humidity

0 20 40 60 80 100 120

Humidity (%)

Figure 24. Lower tso predictions based on humidity changes.

In Figure 25, the same testing methods were used, where humidity was varied as all the other inputs were

held constant (the specific values are the same as above). The graph shows that at lower humidity levels,

the characteristic shape is larger, but becomes tighter as the humidity is increased. Again, the "noise"

within this graph may have to be overlooked since it could be a product of the smaller training set size.

As seen in the Figure 16 equation, humidity is not a factor in the upper median life, t._,. Therefore, a

correlation chart between humidity and the upper median life was not generated.

Figure 26 shows how humidity affects the upper characteristic shape parameter, c. Very low humidity

and humidity around 40% result in smaller characteristic shape values.
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Figure 25. Lower (7 predictions based on humidity changes.
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Figure 26. Upper (7 predictions based on humidity changes.

Figure 27 shows the effects operating frequency has on the lower median life, t_,. For this analysis,

humidity was held at 35% (average indoor), resonant frequency _b) held to i 150 Hz, spring quotient set

to 1804, and tangential force component set to 2.5. The operating frequency (f) was varied from 8(X) Hz

to 2050 Hz, while the ratiofl)% was set appropriately. The results show that the reliability of the

microengines survives longer when operating at either the resonant frequency or at roughly half the

resonant frequency. As mentioned earlier, the noise in the graph may be a result of the small training set
size.
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Figure 27. Lower tso predictions based on operating frequency changes.

Figure 28 was developed by varying operating frequency between 800 Hz and 2050 Hz while the other

input parameters were held constant at the same values as above (Figure 27 analysis). The optimal

operating frequency for a tighter characteristic life seems to be around 10(X) Hz.

e_
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Lower (3 Prediction vs. Op Frequency

0.0000

800 1000 1200 1400 1600 1800 2000

Operating Frequency (Hz)

Figure 28. Lower _ predictions based on operating frequency changex

In Figure 29, operating frequency was once again varied while other inputs were held constant. The

results for the upper mean life seem to be the opposite as for the lower. The most damaging operating

frequency seems to occur at resonant frequency.
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Upper tso Prediction vs. Op Frequency
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Figure 29. Upper tso predictions based on operating frequency changes.

As mentioned earlier, one of the reasons for the bimodality of the distributions may be some degree of

variability in the microengines (resonant frequency may vary). The upper mode may be for the

"'stronger" engines that have a true resonant frequency higher than 1500 Hz. Therefore the upper mode

engines may not survive when operating at an intermediate frequency.

Figure 30 shows the trend analysis for upper (3 versus operating frequency with all input parameters held

constant. The operating frequency was varied from 800 Hz to 2050 Hz while the other input parameters

were held constant as defined in the previous analysis. The smallest characteristic shape is achieved with

either low (around 800 Hz) or high (around 2000 Hz) operating frequencies. As the microengines are

operating close to the resonant frequency, there seems to be greater variability in the failure times.
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Figure 30. Upper cr predictions based on operating frequency changes.
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TheFigure31analyseswereconductedbyvaryingtheresonantfrequencyfrom10(X)Hzto2000Hz.
Thehumiditywasheldconstantat35%,theoperatingfrequencyheldat 1720Hz,thespringquotientat
1804,andthetangentialforcecomponentat 2.5. ThetrendanalysisseeninFigure31suggeststhat
optimalresonantfrequencyis large(greaterthan1900Hz). However,themicroenginetestdatausedto
trainthenetworksonlyhadtwodifferentresonantfrequencies,1150Hzand150(lHz. A largervarietyof
resonantfrequencieswill haveto beobtainedbeforethetrendanalysisbecomesmoremeaningful.
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Figure 31. Lower tso predictions based on resonant frequency changes,

Figure 32 shows the variation of the lower O with changes in resonant frequency. As with the previous

analysis, resonant frequency was varied from 1000 Hz to 2000 Hz while all the other input parameters

were held constant. The results of the trend analysis show that the tightest (Y's are obtained at the higher

resonant frequencies. Microengines with lower resonant frequencies tend to have more variability in
their failure times.
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Figure 32. Lower cr predictions based on resonant frequency changes,
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Asseeninthetransformationequationof Figure16,resonantfrequencydoesnotinfluencetheprediction
of theupper median life, ts,). Figure 33 shows the effects that resonant frequency has on the upper G.

Resonant frequency was varied while the other input parameters were held constant. Any value above

15(XJ Hz seems to provide a smaller value for the characteristic shape. There is a fair amount of

variability at a resonant frequency of 1300 Hz.
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Figure 33. Upper (7"predictions based on resonant frequency changes.

Note that the results from the analysis done in this section only show trends for the specific values of the

parameters held constant. Different trends will exist if using different values for these fixed parameters.

In addition, a relatively small training set size was used; therefore, higher resolution results will be

obtained when the analysis is repeated with larger amounts of training data. With smaller training sets,

the results will contain some noise, and erratic predictions. Finally, of the parameters that were varied

during testing and data collection, most were only varied minimally and not through a complete range.

This may also limit the results and effect of the modeling.

Regardless, the results of the analysis outlined in Figures 24-33 showed trends that were expected and

previously demonstrated (Tanner, 2000). We did not perform trend analysis on the spring quotient and

the tangential force component, since these parameters lacked enough variability. Microengines were

tested with only two values for the spring quotient, 1804 and 1805. The tangential force component had

no variability; all testing was done at 2.5.
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SECTION 4: SUMMARY AND CONCLUSIONS

Both commercial and educational laboratories throughout the world are fabricating MEMS - funding and

development is exponentially growing as industry realizes its potential. These devices may become one

of the key defining technologies of the upcoming decade. They are essentially a hybrid of electrical and

mechanical systems at the micron level. MEMS devices are generally batch-fabricated, in large

quantities, with economies of scale driving unit cost similar to ICs. In addition, the low/no-touch

fabrication process of MEMS can create reliable systems with precision.

MEMS devices are a promising and emerging technology due to the potential to significantly alter many

applications. MEMS have received substantial support for research and development throughout the

world and will revolutionize sensing and control in automotive, medical, space, military,

telecommunication, computing, industrial, and recreational applications.

The next step in the silicon revolution could be the widespread use of MEMS devices in many

commercial and government applications, especially in the optics and communication environments. See

Figure 34 for an example ofa MEMS optical mirror. In this example, a microengine is used to drive a

hinged mirror, which could be used as a keyed arming lock or even as an optical relay switch.

Figure 34. Sandia microengine driving a micro-mirror�Courtesy of Sandia National Labs.

MEMS research and development is rapidly progressing in high-technology application_q--where low-

cost, high-reliability, small-size, and low-power attributes can have dramatic benefits. Just like in the IC

field, the primary economic driver for MEMS is cost. Low cost will ensure its rapid integration into

commercial and government applications.
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4.1 SUMMARY OF PROBLEM

An integral part of any development process is being able to quantify the reliability of the device during

conceptual design. At the conceptual design phase of a project, before the MEMS devices are

manufactured, traditional methods of determining reliability are inadequate since quantification through

testing is not possible. Design engineers need a methodology for estimating MEMS reliability early in

concept design.

To guide MEMS process development through reliability evaluations, MEMS reliability must be

quantified. Such a reliability estimate must be based on data available at the early design phase of a

project---data about the fabrication process, design characteristics and physical attributes and

performance expectations from the device, including parameters related to the operating environment,

and packaging. The neural networks reliability modeling techniques developed within this research

should provide an ideal mechanism to translate these attributes into a predictive reliability tool.

To quantify the reliability of a MEMS component, we must consider not only the device itself, but also

the entire process surrounding the part, from detail design, fabrication, packaging schemes, testing, and

ultimately the environment in which the device will operate. This means that the development process

must be qualified and effectively modeled, including the fabrication process, quality standards, and

fabricator's experience.

4.2 A PROPOSED SOLUTION

The research performed in this research developed MEMS reliability models based on neural networks.

These predictive neural networks can be used in the design process to optimize the overall reliability.

Specifically, these networks can provide insight into what design, fabrication, operating and packaging

attributes are significant determinants of overall reliability (can easily perform sensitivity analysis with

the results of the modeling).

4.3 DATA SOURCE

A common obstacle to research of this type is the lack of readily available data, both quantity and quality,

that are needed for adequate training of the neural networks. Very little obtainable data on MEMS

reliability exists, since most commercial manufacturers consider their reliability data proprietary. Most

universities and research institutions do not have the quantity of similar data required to adequately train

a neural network. However, Sandia National Laboratories in Albuquerque, New Mexico, has been

designing and manufacturing MEMS components for several years. Sandia is also emphasizing MEMS

research because of their characteristics of low cost, high reliability, low power consumption, miniature

size, and low and weight.

Sandia is very interested in the novel modeling approach developed in this effort and provided access to

their reliability data. Most of the reliability data are from the same basic MEMS design, with only design

and operating environment parameters varied. Even though this is a limited test sample, it has provided

an excellent basis to determine the feasibility of this modeling approach.
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4.4 MODELING WITH NEURAL NETWORKS

The general approach to developing neural networks to predict MEMS reliability consists of

decomposing the system to its component level (gears, gyros, springs, etc.), then selecting which MEMS

component attributes have a correlation to that component's reliability. Next, data on these attributes as

well as component reliability are collected through automated testing.

After all the input and output data are collected, the neural networks are trained with the inputs

(attributes) and the outputs--a different network for each type of component. The output was defined to

be the reliability distribution, specifically the shape parameters of the selected distribution. For this

research, as mentioned earlier, the Sandia microengine was used because it was the only one available

with sufficient data. After analyzing the failure data, the log-normal distribution seems to best fit the

Sandia microengines, therefore, the mean life, tso, and shape parameter, (Y, was used as the output

parameters.

Before training commenced, the attribute and reliability data was randomly partitioned into two sets: the

training data (the majority) and validation data (the remainder). A neural network was then applied to

the training partition (both attribute and reliability statistics are used to train the networks)-----the

attributes eventually become the system inputs and reliability, the system output. As previously

discussed, attribute data consist of any parameter that might have a correlation to overall reliability, i.e.,

fabrication process details, physical specifications, operating environment, property characteristics, or

packaging.

During the training process, the neural networks heuristically determine the actual correlation between

the attributes and the reliability statistics. After the networks are trained, the validation data is used to

verify that the neural networks provided accurate reliability predictions----independent validation that the

neural network is accurately predicting reliability. Note that during testing with the validation data, only

the input data are provided to the model. Then the output from the model (the reliability estimate) is

compared to the real reliability value known from testing. If there is consistently good correlation

between the estimates and the known values, the model can be used as a predictive tool for MEMS

reliability. After validation, we can estimate reliability of a newly proposed MEMS device by

decomposition and using the appropriate trained neural networks.

The modeling can be ineffective for several reasons. First, insufficient correlation could result when the

networks are not trained with enough data, or because not enough of the correct inputs were specified.

Possibly the data transformations or segmentation were inadequate. Aberrations in the data (miscollected

or faulty data) could also skew the results. However, from the results obtained through modeling of the

MEMS microengines, the corresponding networks yielded excellent results with very good correlation

present.

4.5 SUMMARY OF FINDINGS

The roughly 800 MEMS microengine failure data were portioned into common sets. Common sets are

those that have the same input values. Each Common set was then fit to a probability distribution. The

log-normal seemed to provide the best modeling results. Upon closer inspection, some of the set of data

exhibited a bimodal tendency. Therefore the data were segregated into upper and lower sets to account

for the bimodality. We tested several neural networks using these sets to determine which would model

MEMS microengine reliability. After extensive testing, the Error Knowledge Networks, a form of a
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statisticalnetwork,providedthebestresults.Furthermore,themodelingresultsshowedthatall output
parameterswerestronglycorrelated.All thet2 values for the four output parameters were greater than

0.90. The neural network transformations from the input parameters to the four output reliability

statistics were performed using a three-pass statistical network. Each network pass consisted of either

one or two nodes. The transformations used both linear or nonlinear multivariant equations.

The network predictions for the output statistics were plotted against the actual values. The lower

distribution showed outstanding results with very few minor prediction errors. The upper distribution

had slightly larger prediction errors but this may have been a result of the methodology employed.

Specifically, for distributions that were unimodal, the values were duplicated during training to create

both the upper and lower input parameters. This may have resulted in a slight skew of the results.

However, overall, the modeling of MEMS reliability using neural networks was highly effective even

considering the approach to model bimodality.

After the modeling was completed, including validating the results, we used the networks to perform

sensitivity analysis. The first parameter analyzed was humidity. Low humidity showed the best results

on overall microengine reliability. Next, operating frequency analysis showed that operating at either

half or full resonant frequency had the best overall effects on microengine life. Further analysis showed

that microengines with high resonant frequencies typically lasted longer.

Results from the original modeling and sensitive analysis can be used to optimize microengine design.

When more input parameters are defined and data collected on them, the optimal combination of

parameters can be derived. With this insight, designers can optimize future microengine design.

4.6 AREAS FOR FURTHER RESEARCH

One of the major drawbacks to the current modeling effort is the number of data samples used for

modeling. For this research, only 787 microengines were used. This data condensed to 15 data

distributions, which were used to train the neural networks. Ideally, there should be a few thousand

microengines tested to failure to build about 100 different distributions. The resulting neural networks

will provide more accurate and robust modeling of the reliability statistics. This methodology should be

repeated as more data are obtained.

The limited input parameters further constrained the data: there were only 8 different input parameters.

However, the number of microengine attributes that influence reliability is vastly larger. More detailed

analysis should be conducted to identify and collect all reliability-dependent attributes.

Furthermore, for each identified attribute, testing should be conducted with a more systematic approach.

Testing should be coordinated so that each parameter can be varied through a predefined range. At least

10 data points should be collected for each setting of the input parameters, while holding all other

parameters constant. For example, for humidity, 10 microengines should be tested to failure for each

humidity level selected. Humidity should be tested at regular, precise settings, such as 0%, 10_, 20%...

100% while all other input parameters are held constant.

Precise data should be collected for all input parameters defined. For instance, precise failure times

should be collected whenever feasible, as opposed to "ranged" data. The process should be automated so

that failure is known within a resolution of a few 100 cycles. An automated process that monitors

operating frequency or other attributes signaling failure should be incorporated. Also, other parameters
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likeresonantfrequencyneedtobepreciselydeterminedfor eachmicroengine.Averageresonant
frequenciesmaynotprovideaccurateassessmentof its influenceonoveralloperationallife.

Aftercollectingthe data, additional data transformations and feature extractions should be attempted to

iesure comprehensive modeling. Certain additional features can extenuate modeling results as discussed
in the Neural Network section above.

Eventually, as more MEMS data are accessed and incorporated into the modeling scheme, decomposition

into MEMS components can be fully realized. Currently, the whole microengine is modeled in one

network. However, in the future, complete MEMS systems should be segregated and decomposed into

individual components before training, testing, and application of the neural networks. Currently

insufficient data exist to expand the functionality of the networks to this level.

The methodology employed in this research to account for the bimodality of the probability distribution

should be further investigated. Even though the current methodology yielded good results, other

approaches to model this characteristic should also be developed and compared.

4.7 CONCLUSION

Extensive research into the development of reliability modeling techniques using neural networks has

been performed in this research. Using comprehensive reliability data from Sandia National Laboratories

has enabled us to develop, test, and valide this prediction methodology. The preliminary results of this

research suggest that use of the techniques described herein may be used to accurately estimate the

reliability of proposed MEMS devices during the concept design phase (even before they even exist).

Such tools may therefore be used as feedback into the design and development of new MEMS devices to

ensure that the ultimate end product has a higher likelihood of being robust and reliable.
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APPENDIX: SANDIA MICROENGINE DATA

Humidity

35

35

35

35

35

35

35

35

35

Operating

Freq.

1204

1204

1204

1204

1204

1204

1204

1204

1204

Resonant

Freq.

10608

10608

10608

10608

10608

10608

10608

10608

10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

f/_ Spring TangentiaIForce
Quotient

Comp

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

0.113 1825 2.5

Pin Joint F_xure

Design (24)Design (1-3] OperatingCycles

0 1 82246000

0 1 30000

0 1 2246000

0 1 126000

0 1 16246000

0 1 222000

0 1 >>1369246000

0 1 >>1369246000

0 1 222000

0 1 558246000

0 1 55824600O

0 1 >>1369246000

0 1 126000

0 1 >>1369246000

0 1 734000

0 1 1059246000

0 1 222000

0 1 14000

0 1 >>1369246000

0 1 158000

0 1 558246000

0 1 14000

0 1 1059246000

0 1 222000

0 1 158000

0 1 174000

0 1 16246000

0 1 222000

0 1 >>1369246000

0 1 126000

0 1 126000

0 1 126000

0 1 >>1369246000

0 1 662246000

A-1



Operating Resonant
Humidi_

Freq. Freq.

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 1O608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

35 1204 10608

fifo

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0,113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

0.113

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2,5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (24]Design (1-3] OperatingCycles

0 1 158000

0 1 248246000

0 1 222000

0 1 662246000

0 1 30000

0 1 558246000

0 1 2246000

0 1 158000

0 1 1059246000

0 1 126000

0 1 >>1369246000

0 1 222000

0 1 158000

0 1 14000

1 0 222000

1 0 126000

1 0 126000

1 0 190000

1 0 126000

1 0 126000

1 0 222000

1 0 174000

1 0 222000

1 0 158000

1 0 222000

1 0 >>1369246000

1 0 174000

1 0 1246000

1 0 >>1369246000

1 0 126000

1 0 158000

1 0 >>1369246000

1 0 222000

1 0 126000

1 0 158000

1 0 >>1369246000
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Operating Resonant
Humidity Freq. Freq. f/&

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 1204 10608 0.113

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

0.08135 86O 10608

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangentiall

Force

Comp

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (2A)Design (1-3} OperatingCycles

1 0 158000

1 0 158000

1 0 126000

1 0 126000

1 0 158000

1 0 62000

1 0 62000

1 0 126000

1 0 190000

1 0 62000

1 0 126000

1 0 126000

1 0 350000

1 0 30000

1 0 174000

1 0 662246000

1 0 158000

1 0 158000

1 0 158O00

1 0 126000

1 0 126000

1 0 126000

1 0 15800O

0 1 2001

0 1 94001

0 1 94001

0 1 94001

0 1 94001

0 1 94001

0 1 94001

0 1 126001

0 1 126001

0 1 126001

0 1 126001

0 1 158001

0 1 222001
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Operating Resonant
Humidi_

Freq. Freq.

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 86O 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 86O 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 860 10608

35 86O 10608

35 86O 10608

35 860 10608

35 86O 10608

35 860 10608

35 86O 10608

35 860 10608

f/_

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

0.081

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (24)Design (1-3] OperatingCycles

0 1 222001

0 1 350001

0 1 350001

0 1 350001

0 1 478001

0 1 478001

0 1 478001

0 1 734001

0 1 192414001

0 1 262414001

0 1 339814001

0 1 488214001

0 1 488214001

0 1 855000001

0 1 8550OOOO1

0 1 >>900000000

0 1 >>900000000

0 1 >>900000000

0 1 >>900000000

0 1 >>900000000

0 1 >>900000000

1 0 14001

1 0 30001

1 0 30001

1 0 30001

1 0 30001

1 0 62001

1 0 62001

1 0 62001

1 0 62001

1 0 62001

1 0 62001

1 0 62001

1 0 62001

1 0 94001

1 0 94001
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Humidity

35

35

Operating

Freq.

860

86O

35 860

35 860

35 860

Resonant
fifo

Freq.

10608 0.081

1O608 0.081

10608 0.081

10608 0.081

10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860

35 860

86035

10608 0.081

10608 0.081

35 860 10608 0.081

35 860 10608 0.081

10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 860 10608 0.081

35 1500

35 1500

10608 0.141

10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500

35 1500

10608 0.141

106O8 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500

35 1500

35 1500 10608

35 1500 10608

35 1500

35 1500

35 1500

150035

35 1500

35 1500

10608 0.141

10608 0.141

0.141

0.141

10608 0.141

10608 0.141

10608 0.141

10608 0.141

10608 0.141

10608 0.141

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint F_xure

Design (24] Design (1-3) OperatingCycles

1 0 94001

1 0 94001

1 0 94001

1 0 94001

1 0 94001

1 0 126001

1 0 126001

1 0 126001

1 0 126001

1 0 158001

1 0 222001

1 0 222001

1 0 350001

1 0 734001

1 0 16414001

1 0 128414001

1 0 192414001

1 0 262414001

0 1 30000

0 1 30000

0 1 62000

0 1 126000

0 1 126000

0 1 126000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 190000

0 1 254000

0 1 254000
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Humidity

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

Operating

Freq.

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

1500

Resonant

Freq.

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

fifo

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.141

0.14135 1500 10608

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

1060835 1500

35 1500 1O608

35 1500 10608

35 1500 10608

35 1500 10608

35 1500 10608

0.141

0.141

0.141

0.141

0.141

0.141

Spring

Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

PinJoint Flexure

_sign (2-4)Design(1-3) OperatingCycles

0 1 254000

0 1 254000

0 1 254000

0 1 254000

0 1 286000

0 1 286000

0 1 286000

0 1 318000

0 1 318000

0 1 382000

0 1 446000

0 1 510000

0 1 510000

0 1 510000

0 1 510000

0 1 510000

0 1 644400

0 1 708400

0 1 2912400

0 1 >>3000000

0 1 >>3000000

1 0 2000

1 0 2000

I 0 2000

1 0 30000

1 0 30000

1 0 62000

1 0 62000

1 0 62000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 126OO0

1 0 126000
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OperatingResonant
Humidity f / _

Freq. Freq.

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1500 10608 0.141

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

35 1720 10608 0.162

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

TangentialI

Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure
OperatingCycles

Design (24)Design (1-3]

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 254000

1 0 286O00

1 0 644400

1 0 6000

1 0 62000

1 0 62000

1 0 94000

1 0 94000

1 0 286000

1 0 286000

1 0 286000

1 0 286000
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Ope_tingResonant
Humidi_

Freq. Freq.

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 t720 10608

35 1720 10608

35 1720 10608

35 1720 10608

35 1720 1O6O8

35 1720 10608

35 1720 10608

35 1720 10608

f/6

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0,162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

0.162

Spring

Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (2A)Design (1-3) OperatingCycles

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 286000

1 0 478000

1 0 478000

1 0 478000

1 0 478000

1 0 606000

1 0 862000

0 1 14000

0 1 62000

0 1 62000

0 1 62000

0 1 94000

0 1 158000

0 1 158000

0 1 158000

0 1 286000

0 1 286000

0 1 286000

0 1 286000

0 1 286000

0 1 286000

0 1 286000

0 1 478000

0 1 606000
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Humidity

35

35

Operating

Freq.

Resonant

Freq.

1720 10608

1720 10608

35 1720

35 1720

35 1720

10608

10608

10608

f/ fo

0.162

0.162

0.162

0.162

0.162

0.16235 1720 10608

35 1720 10608 0.162

35 1720 10608 0.162

35 2064 10608 0.195

35 2064 10608

35 2064 1O608

35 2064 10608

35 2064 10608

35 2064 10608

10608

10608

10608

35 2064

35 2064

35 2064

0.195

0.195

0.195

0.195

0.195

0.195

0.195

0.195

0,195

35

35 2064 10608

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608

2064 10608

2064

2064

10608

10608

10608

35

2O64

35

35

35

0.195

0.195

0.195

0.195

0.195

0.1952064 10608

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608

35 2O64 10608

35 2064 10608

35 2064

35 2064

10608

106O8

0.195

0.195

0.195

0.195

0.195

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

25

PinJoint

Design (2-4]

Flexure

Design (1-3)

0 1

0 1

0 1

OperatingCycles

606000

606000

734000

862000

862000

862000

1246000

0 1 613326000

1 0 2000

1 0 62000

1 0

1 0

62000

62000

1 0 78000

1 0 78000

1 0 78000

1 0

1 0

1 0

1 0

1 0

1 0

1 0

0

78000

94000

94000

94000

126000

126000

126000

1 126000

1 0 126000

1 0 126000

1 0

1 0

1 0

1 0

1 0

126000

126000

142000

174000

238000

238000

334000

3340001 0

1 0 334000

1 0 398000

0 398000
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Humidi_ Operating Resonant fl_
Freq. Freq.

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0,195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0,195

35 2064 10608 0.195

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (24)l)esign (1-3] OperatingCycles

1 0 494000

1 0 1134000

1 0 316102000

1 0 933102000

1 0 1515102000

0 1 62000

0 1 62000

0 1 62000

0 1 62000

0 1 62000

0 1 78000

0 1 78000

0 1 94000

0 1 126000

0 1 126000

0 1 126000

0 1 126000

0 1 142000

0 1 174000

0 1 174000

0 1 174000

0 1 238000

0 1 238000

0 1 238000

0 1 238000

0 1 238000

0 1 238000

0 1 238000

0 1 238000

0 1 270000

0 1 270000

0 1 270000

0 1 334000

0 1 398000

0 1 398000

0 1 398000
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Operating Resonant
Humidi_ f / _

Freq. Freq.

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2064 10608 0.195

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

Spring

Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

;Design(2-4)Design (1-3) OperatingCycles

0 1 494000

0 1 878000

0 1 878000

0 1 878000

0 1 878000

0 1 8780O0

0 1 1134000

0 1 1134000

0 1 1134000

0 1 1134000

0 1 2102000

0 1 152102000

0 1 >>1275102000

0 1 >>1916102000

0 1 >>1515102000

1 0 14000

1 0 14000

1 0 30000

1 0 62000

1 0 62000

l 0 62000

I 0 62000

I 0 62000

1 0 62000

1 0 94000

1 0 94000

1 0 94000

1 0 94000

1 0 94000

1 0 126000

1 0 126000

1 0 158000

1 0 158000

1 0 158000

1 0 158000

0 158000
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Humidity Operating Resonant I/_
Freq. Freq.

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0.207

10608

35 2200

35 2200

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

10608220035

0.207

0.207

0.207

0.207

0,207

0,207

0,207

0.207

0,207

0,207

0,207

0.207

0.207

0,207

0.207

0.207

0,207

0.207

0,207

0.207

0,207

0.207

0.207

0.207

0.207

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 2200 10608

35 220O 10608

35 2200 10608 0.207

35 2200 10608 0.207

35 2200 10608 0,207

35 2200 10608 0.207

35 2408 10608 0.227

35 2408 10608 0,227

35 2408 10608 0.227

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (2.4:Design (1-3) OperatingCycles

1 0 190000

1 0 190000

1 0 222000

1 0 222000

1 0 254000

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

62000

62000

126000

126000

126000

126000

158000

190000

0 I 190000

0 I 190000

0 I 222000

2220000 I

0 I

0 I

222000

222000

2540000 1

0 1 254000

0 1 286000

0 1 478000

0 1 478000

0 1 734000

0 1 734000

0 1 734000

0 1 734000

0 1 734000

0 1 862000

0 1 862000

0 1 926000

0 1 926000

1 0 2000

1 0 30000

1 0 30000
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Humidity

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

Operating

Freq.

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

2408

Resonant

Freq.

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

10608

lifo

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

35 2408 10608 0.227

Spring
Quotie_

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure OperatingCycles
Design (24)gesign (1-3]

1 0 30000

1 0 30000

1 0 62000

1 0 62000

1 0 62000

1 0 62000

1 0 62000

1 0 62000

1 0 62000

1 0 94000

1 0 94000

1 0 94000

1 0 94000

1 0 94000

1 0 94000

1 0 126000

1 0 126000

1 0 126000

1 0 190000

1 0 190000

1 0 190000

1 0 638000

1 0 1150000

1 0 1150000

1 0 >>33686000

0 1 62000

0 1 62000

0 1 62000

0 1 62000

0 1 94000

0 1 94000

0 1 94000

0 1 94000

0 1 190000

0 1 190000

1 190000
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OperatingResonant
Humidity Freq. Freq.

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408 10608

35 2408

2408

10608

1060835

35 2408 10608

35 2408 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 I0608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

f/_

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.227

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (24]l)esign (1-3j OperatingCycles

0 1 190000

0 1 190000

0 1 254000

0 1 382000

0 1 1150000

0 1 1150000

0 1 1150000

0 1 1662000

0 1 1662000

0 1 1662000

0 1 1662000

0 1 1662000

0 1 2174000

0 1 2174000

0 1 2174000

0 1 2174000

0 1 2686000

0 1 2686000

0 1 5686000

0 1 17686000

0 1 >>17686000

0 1 >>33686000

0 1 >>33686000

0 I >>33686000

0 1 30000

0 1 62000

0 1 126000

0 1 126000

0 1 126000

0 1 126000

0 1 126000

0 1 126000

0 1 350000

0 1 450000

0 1 550000

0 1 550000
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Operating Resonant
Humidity Freq. Freq.

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

3000 1060835

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

10608

35 3OOO

fifo

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

35 3000

35 3000 10608

35 3000 10608

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

10608 0.283

3000

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

10608

3000

35

10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

0.28335

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

Spring

Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure

Design (2-4)Design (1-3]

0 1

0 1

0 1

0 1

0 1

0 1

0 1

OperatingCycles

550000

806000

806000

806000

806000

1062000

1062000

1062000

0 1 1062000

0 1 1O62000

0 1 1318000

0 1 1830000

0 1 1830000

0 1 1830000

0 1 1830000

1 1830000

0 1 1830000

0 1 1830000

0 1 1830000

0 1 1830000

0 1 183000O

0 1 2086000

0 1 2086000

0 1 2O86OO0

0 1 2342000

0 1 2854000

0 1 3854000

0 1 3854000

38540000 1

0 1 6854000

0 1 10854OO0

0 1 18854O00

1 0 600O

1 0 14000

1 0 30000

30000
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Humidity

35

Operating

Freq.

3000

Resonant

Freq.

10608

35 3000 10608

35 3000 10608

35 3000 10608

35

35

35

35

3000 10608

3000 10608

3000 10608

35

3000

3000

300035

35

10608

3000

10608

10608

flfo

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.28335 3000 10608

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 10608

35 3000 106O8

35 3000 10608

35 3000 10608

35 3000 10608

10608

300035 10608

1060835 3000

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

0.283

35 3000 10608

35 3000 10608

35 3000 10608 0.283

35 3000 10608 0.283

35

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

35 3000 10608 0.283

3000 10608 0.283

Spring
Quotient

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

1825

Tangential
Force

Comp

25

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

25

25

25

2.5

2.5

2.5

2.5

2.5

2.5

25

2.5

2.5

PinJoint

Design (2-4)

Flexure

Design (1-3]

1 0

1 0

1 0

1 0

1 0

1 0

1 0

OperatingCycles

30000

62000

126000

126000

126000

126000

126000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

1 0 126000

126000

1260001 0

1 0 126000

1 0 158000

1 0 1580O0

1 0 158000

1 0

1 0

1 0

1 0

1 0

1 0

158000

222000

222000

222000

222000

350000

1 0 350000

1 0 350000

1 0 350000

1 0 350000

1 0 350000

0 4500001

1 0

1 0

450000

450000

1 0 450000

1 0 450000

1 0

1 0

450000

>>806000
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HumidAy Operating Resonant f/&
Freq. Freq.

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0,205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

0 1720 8394 0.205

Sprin9
Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint FlexuR

Design (2_] Design (1-3) OperatingCycles

I 0 2000

0 1 6000

1 0 30000

1 0 284000

0 1 540000

0 1 1052000

1 0 1O52000

1 0 1052000

1 0 1052000

0 1 1052000

1 0 1052000

0 1 1052000

1 0 1052000

1 0 1052000

0 1 1052000

1 0 1052000

0 1 1052000

0 1 1052000

1 0 1052000

1 0 1052000

0 1 1052000

1 0 1052000

1 0 1052000

1 0 1052000

1 0 1052000

0 1 1116000

1 0 1180000

1 0 2108000

0 1 14000

1 0 14000

0 1 22000

1 0 22000

0 1 30000

1 0 542000

1 0 542000

0 1 642000
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Operating Resonant
Humidi_

Freq. Freq.

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

0 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

fl_

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

Spring
Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

25

2.5

25

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

2.5

2.5

25

25

2.5

2.5

25

2.5

25

2.5

2.5

2.5

2.5

PinJoint Flexure
Design (2A]Design (1-3) OperatingCycles

1 0 642000

1 0 742000

1 0 742000

1 0 742000

0 1 842000

1 0 842000

1 0 842000

1 0 842000

1 0 842000

1 0 842000

0 1 992000

1 0 1092000

1 0 1092000

1 0 1192000

1 0 1192000

1 0 1492001

1 0 1492001

0 1 1592001

1 0 1592001

1 0 16920O1

1 0 2192001

1 0 4792001

1 0 2000

1 0 2000

0 1 2000

0 1 2000

1 0 6000

1 0 6000

1 0 14000

1 0 14000

0 1 14000

1 0 14000

1 0 14000

1 0 22000

1 0 22000

1 0 22000
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Operating Resonant
Humidity

Freq. Freq.

I0 1720 8394

I0 1720 8394

I0 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

10 1720 8394

20 1720 8394

20 1720 8394

2O 1720 8394

2O 1720 8394

20 1720 8394

20 1720 8394

I/_

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

Spring

Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

2,5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

PinJoint Flexure

Design (24] Design (1-3) OperatingCycles

1 0 38000

0 1 38000

1 0 70000

1 0 70000

1 0 120000

0 1 120000

0 1 120000

1 0 120000

0 1 170000

1 0 170000

0 1 170000

1 0 170000

1 0 170000

0 1 220000

1 0 220000

1 0 270000

0 1 270000

1 0 270000

1 0 270000

1 0 270000

0 1 320000

0 1 370000

0 1 420000

1 0 420000

1 0 570000

1 0 57000O

1 0 570000

0 1 770000

1 0 770000

1 0 870000

1 0 62000

0 1 126000

1 0 126000

0 1 226000

1 0 226000

1 0 226000

A-19



Humidity Operating Resonant f/&
Freq. Freq.

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

20 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

Spring
Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

Pin Joint Flexure

Design (2-4]Design(1-3) OperatingCycles

0 1 226000

1 0 290000

1 0 290000

1 0 290000

1 0 290000

1 0 290000

0 1 354000

I 0 354000

I 0 354000

1 0 354000

1 0 418000

0 1 418000

0 1 418000

0 1 418000

1 0 482000

1 0 582000

I 0 582000

0 I 582000

l 0 582000

I 0 582000

0 I 746000

I 0 746000

0 I 746000

I 0 62000

1 0 126000

I 0 126000

1 0 126000

I 0 126000

I 0 126000

0 1 190000

0 1 190000

0 1 190000

1 0 190000

1 0 254000

0 1 354000

1 0 354000
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Humidity

30

30

Operating

Freq.

3O

1720

1720

Resonant

Freq.

8394

8394

fifo

0.205

0.205

0.205

0.205

0.205

30 1720 8394

30 1720 8394

30 1720 8394

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394 0.205

30 1720 8394

30 1720 8394

30 1720 8394

30 1720 8394

1720 8394

30 1720 8394

30 1720 8394

30 1720 8394

40 1720 8394

40 1720 8394

40 1720 8394

8394172040

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.20540 1720 8394

40 1720 8394 0.205

40 1720 8394

40 1720 8394

40 1720 8394

40 1720 8394

40 1720 8394

172040

40

4O

40

8394

8394

8394

8394

1720

1720

1720

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.205

0.20540 1720 8394

40 1720 8394 0.205

40 1720 8394 0.205

40 1720 8394 0.205

40 1720 8394 0.205

Spring
Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

25

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2,5

2.5

2.5

PinJoint FlexuR
Design(2A)Design (1-3) OperatingCycles

0 1 354000

0 1 454000

1 0 454000

1 0 454000

1 0 954000

1 0

0 1

1 0

1 0

1

954000

954000

954000

954000

9540000

1 0 954000

0 1 1260680

0 1 1375920

1 0 1400000

1 0 1454001

0 1 1454001

0 1 62000

0 1 254000

0 1 254000

1 0 254000

1 0 254000

1 0 318000

318000

1 0 382000

0 1 382000

1 0 382000

1 0 446000

1 0 446000

1 4460O0

1 0

1 0

1 0

1 0

1 0

0 1

446000

446000

478000

4780O0

510000

606000

670000
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Humidity Operating Resonant f/_
Freq. Freq.

40 1720 8394 0.205

40 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

70 1720 8394 0.205

Spring
Quotient

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

1804

Tangential
Force

Comp

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

2.5

PinJoint Flexure
Oper=ing Cycles

Design (24)Design (1-3]

1 0 670000

1 0 862000

1 0 126000

1 0 126000

0 1 126000

0 1 126000

1 0 126000

0 1 190000

1 0 190000

0 1 190000

0 1 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

1 0 190000

0 1 190000

1 190000

222000

222000

2220001 0

1 0 222000

1 0 222000

1 0 222000

1 0 222000

0 1 222000

1 0 222000

1 0 254000

0 1 254000

0 1 254000

0 1 350000

0 1 350000
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